Spaces:
Running
Running
import matplotlib.pyplot as plt | |
import os, cv2 | |
import numpy as np | |
from mono.utils.transform import gray_to_colormap | |
import shutil | |
import glob | |
from mono.utils.running import main_process | |
import torch | |
from html4vision import Col, imagetable | |
def save_raw_imgs( | |
pred: torch.tensor, | |
rgb: torch.tensor, | |
filename: str, | |
save_dir: str, | |
scale: float=1000.0, | |
target: torch.tensor=None, | |
): | |
""" | |
Save raw GT, predictions, RGB in the same file. | |
""" | |
cv2.imwrite(os.path.join(save_dir, filename[:-4]+'_rgb.jpg'), rgb) | |
cv2.imwrite(os.path.join(save_dir, filename[:-4]+'_gt.png'), (pred*scale).astype(np.uint16)) | |
if target is not None: | |
cv2.imwrite(os.path.join(save_dir, filename[:-4]+'_gt.png'), (target*scale).astype(np.uint16)) | |
def save_normal_val_imgs( | |
iter: int, | |
pred: torch.tensor, | |
#targ: torch.tensor, | |
#rgb: torch.tensor, | |
filename: str, | |
save_dir: str, | |
tb_logger=None, | |
mask=None, | |
): | |
""" | |
Save GT, predictions, RGB in the same file. | |
""" | |
mean = np.array([123.675, 116.28, 103.53])[np.newaxis, np.newaxis, :] | |
std= np.array([58.395, 57.12, 57.375])[np.newaxis, np.newaxis, :] | |
pred = pred.squeeze() | |
# if pred.size(0) == 3: | |
# pred = pred.permute(1,2,0) | |
# pred_color = vis_surface_normal(pred, mask) | |
# #save one image only | |
# plt.imsave(os.path.join(save_dir, filename[:-4]+'.jpg'), pred_color) | |
targ = targ.squeeze() | |
rgb = rgb.squeeze() | |
if pred.size(0) == 3: | |
pred = pred.permute(1,2,0) | |
if targ.size(0) == 3: | |
targ = targ.permute(1,2,0) | |
if rgb.size(0) == 3: | |
rgb = rgb.permute(1,2,0) | |
pred_color = vis_surface_normal(pred, mask) | |
targ_color = vis_surface_normal(targ, mask) | |
rgb_color = ((rgb.cpu().numpy() * std) + mean).astype(np.uint8) | |
try: | |
cat_img = np.concatenate([rgb_color, pred_color, targ_color], axis=0) | |
except: | |
pred_color = cv2.resize(pred_color, (rgb.shape[1], rgb.shape[0])) | |
targ_color = cv2.resize(targ_color, (rgb.shape[1], rgb.shape[0])) | |
cat_img = np.concatenate([rgb_color, pred_color, targ_color], axis=0) | |
plt.imsave(os.path.join(save_dir, filename[:-4]+'_merge.jpg'), cat_img) | |
# cv2.imwrite(os.path.join(save_dir, filename[:-4]+'.jpg'), pred_color) | |
# save to tensorboard | |
if tb_logger is not None: | |
tb_logger.add_image(f'{filename[:-4]}_merge.jpg', cat_img.transpose((2, 0, 1)), iter) | |
def save_val_imgs( | |
iter: int, | |
pred: torch.tensor, | |
target: torch.tensor, | |
rgb: torch.tensor, | |
filename: str, | |
save_dir: str, | |
tb_logger=None | |
): | |
""" | |
Save GT, predictions, RGB in the same file. | |
""" | |
rgb, pred_scale, target_scale, pred_color, target_color, max_scale = get_data_for_log(pred, target, rgb) | |
rgb = rgb.transpose((1, 2, 0)) | |
# plt.imsave(os.path.join(save_dir, filename[:-4]+'_rgb.jpg'), rgb) | |
# plt.imsave(os.path.join(save_dir, filename[:-4]+'_pred.png'), pred_scale, cmap='rainbow') | |
# plt.imsave(os.path.join(save_dir, filename[:-4]+'_gt.png'), target_scale, cmap='rainbow') | |
cat_img = np.concatenate([rgb, pred_color, target_color], axis=0) | |
plt.imsave(os.path.join(save_dir, filename[:-4]+'_merge.jpg'), cat_img) | |
# save to tensorboard | |
if tb_logger is not None: | |
# tb_logger.add_image(f'{filename[:-4]}_rgb.jpg', rgb, iter) | |
# tb_logger.add_image(f'{filename[:-4]}_pred.jpg', gray_to_colormap(pred_scale).transpose((2, 0, 1)), iter) | |
# tb_logger.add_image(f'{filename[:-4]}_gt.jpg', gray_to_colormap(target_scale).transpose((2, 0, 1)), iter) | |
tb_logger.add_image(f'{filename[:-4]}_merge.jpg', cat_img.transpose((2, 0, 1)), iter) | |
return max_scale | |
def get_data_for_log(pred: torch.tensor, target: torch.tensor, rgb: torch.tensor): | |
mean = np.array([123.675, 116.28, 103.53])[:, np.newaxis, np.newaxis] | |
std= np.array([58.395, 57.12, 57.375])[:, np.newaxis, np.newaxis] | |
pred = pred.squeeze().cpu().numpy() | |
target = target.squeeze().cpu().numpy() | |
rgb = rgb.squeeze().cpu().numpy() | |
pred[pred<0] = 0 | |
target[target<0] = 0 | |
#max_scale = max(pred.max(), target.max()) | |
max_scale = min(2.0 * target.max(), pred.max()) | |
pred[pred > max_scale] = max_scale | |
pred_scale = (pred/max_scale * 10000).astype(np.uint16) | |
target_scale = (target/max_scale * 10000).astype(np.uint16) | |
pred_color = gray_to_colormap(pred, max_value=max_scale) | |
target_color = gray_to_colormap(target, max_value=max_scale) | |
dilate = True | |
if dilate == True: | |
k=np.ones((3,3),np.uint8) | |
target_color=cv2.dilate(target_color,k,iterations=1) | |
pred_color = cv2.resize(pred_color, (rgb.shape[2], rgb.shape[1])) | |
target_color = cv2.resize(target_color, (rgb.shape[2], rgb.shape[1])) | |
rgb = ((rgb * std) + mean).astype(np.uint8) | |
return rgb, pred_scale, target_scale, pred_color, target_color, max_scale | |
def create_html(name2path, save_path='index.html', size=(256, 384)): | |
# table description | |
cols = [] | |
for k, v in name2path.items(): | |
col_i = Col('img', k, v) # specify image content for column | |
cols.append(col_i) | |
# html table generation | |
imagetable(cols, out_file=save_path, imsize=size) | |
def visual_train_data(gt_depth, rgb, filename, wkdir, replace=False, pred=None): | |
gt_depth = gt_depth.cpu().squeeze().numpy() | |
rgb = rgb.cpu().squeeze().numpy() | |
mean = np.array([123.675, 116.28, 103.53])[:, np.newaxis, np.newaxis] | |
std= np.array([58.395, 57.12, 57.375])[:, np.newaxis, np.newaxis] | |
mask = gt_depth > 0 | |
rgb = ((rgb * std) + mean).astype(np.uint8).transpose((1, 2, 0)) | |
gt_vis = gray_to_colormap(gt_depth) | |
if replace: | |
rgb[mask] = gt_vis[mask] | |
if pred is not None: | |
pred_depth = pred.detach().cpu().squeeze().numpy() | |
pred_vis = gray_to_colormap(pred_depth) | |
merge = np.concatenate([rgb, gt_vis, pred_vis], axis=0) | |
save_path = os.path.join(wkdir, 'test_train', filename) | |
os.makedirs(os.path.dirname(save_path), exist_ok=True) | |
plt.imsave(save_path, merge) | |
def create_dir_for_validate_meta(work_dir, iter_id): | |
curr_folders = glob.glob(work_dir + '/online_val/*0') | |
curr_folders = [i for i in curr_folders if os.path.isdir(i)] | |
if len(curr_folders) > 8: | |
curr_folders.sort() | |
del_foler = curr_folders.pop(0) | |
print(del_foler) | |
if main_process(): | |
# only rank==0 do it | |
if os.path.exists(del_foler): | |
shutil.rmtree(del_foler) | |
if os.path.exists(del_foler + '.html'): | |
os.remove(del_foler + '.html') | |
save_val_meta_data_dir = os.path.join(work_dir, 'online_val', '%08d'%iter_id) | |
os.makedirs(save_val_meta_data_dir, exist_ok=True) | |
return save_val_meta_data_dir | |
def vis_surface_normal(normal: torch.tensor, mask: torch.tensor=None) -> np.array: | |
""" | |
Visualize surface normal. Transfer surface normal value from [-1, 1] to [0, 255] | |
Aargs: | |
normal (torch.tensor, [h, w, 3]): surface normal | |
mask (torch.tensor, [h, w]): valid masks | |
""" | |
normal = normal.cpu().numpy().squeeze() | |
n_img_L2 = np.sqrt(np.sum(normal ** 2, axis=2, keepdims=True)) | |
n_img_norm = normal / (n_img_L2 + 1e-8) | |
normal_vis = n_img_norm * 127 | |
normal_vis += 128 | |
normal_vis = normal_vis.astype(np.uint8) | |
if mask is not None: | |
mask = mask.cpu().numpy().squeeze() | |
normal_vis[~mask] = 0 | |
return normal_vis |