File size: 8,144 Bytes
7aac284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import librosa
import joblib
from keras.models import load_model
import numpy as np
import pandas as pd
import gradio as gr
import h5py
TF_ENABLE_ONEDNN_OPTS=0

root_path ="./model/"
num2label = {0:"Neutral", 1: "Calm", 2:"Happy", 3:"Sad", 4:"Angry", 5:"Fearful", 6:"Disgust", 7:"Surprised"}

SVM_spectral = joblib.load(root_path + "SVM_spectral.joblib")
SVM_prosodic = joblib.load(root_path + "SVM_prosodic.joblib")
SVM_full = joblib.load(root_path + "SVM_full.joblib")
SVM_mfcc = joblib.load(root_path + "SVM_mfcc.joblib")

NB_spectral = joblib.load(root_path + "NB_spectral.joblib")
NB_prosodic = joblib.load(root_path + "NB_prosodic.joblib")
NB_full = joblib.load(root_path + "NB_full.joblib")
NB_mfcc = joblib.load(root_path + "NB_mfcc.joblib")

DT_spectral = joblib.load(root_path + "DT_spectral.joblib")
DT_prosodic = joblib.load(root_path + "DT_prosodic.joblib")
DT_full = joblib.load(root_path + "DT_full.joblib")
DT_mfcc = joblib.load(root_path + "DT_mfcc.joblib")


MLP_spectral = joblib.load(root_path + "MLP_spectral.joblib")
MLP_prosodic = joblib.load(root_path + "MLP_prosodic.joblib")
MLP_full = joblib.load(root_path + "MLP_full.joblib")
MLP_mfcc = joblib.load(root_path + "MLP_mfcc.joblib")

RF_spectral = joblib.load(root_path + "RF_spectral.joblib")
RF_prosodic = joblib.load(root_path + "RF_prosodic.joblib")
RF_full = joblib.load(root_path + "RF_full.joblib")
RF_mfcc = joblib.load(root_path + "RF_mfcc.joblib")

def load_model_from_h5(file_path):
    with h5py.File(file_path, 'r') as file:
        model = load_model(file, compile=False)
    return model

LSTM_spectral = load_model_from_h5(root_path + "LSTM_spectral.h5")
LSTM_prosodic = load_model_from_h5(root_path + "LSTM_prosodic.h5")
LSTM_full = load_model_from_h5(root_path + "LSTM_full.h5")
LSTM_mfcc = load_model_from_h5(root_path + "LSTM_mfcc.h5")

LSTM_CNN_spectral = load_model_from_h5(root_path + "LSTM_CNN_spectral.h5")
LSTM_CNN_prosodic = load_model_from_h5(root_path + "LSTM_CNN_prosodic.h5")
LSTM_CNN_full = load_model_from_h5(root_path + "LSTM_CNN_full.h5")
LSTM_CNN_mfcc = load_model_from_h5(root_path + "LSTM_CNN_mfcc.h5")

CNN_spectral = load_model_from_h5(root_path + "CNN_spectral.h5")
CNN_prosodic = load_model_from_h5(root_path + "CNN_prosodic.h5")
CNN_full = load_model_from_h5(root_path + "CNN_full.h5")
CNN_mfcc = load_model_from_h5(root_path + "CNN_mfcc.h5")    

total_model = {"SVM": {'mfcc': SVM_mfcc, 'spectral': SVM_spectral, 'prosodic':SVM_prosodic, 'full':SVM_full},
               "NB": {'mfcc': NB_mfcc, 'spectral': NB_spectral, 'prosodic': NB_prosodic, 'full': NB_full},
               "DT": {'mfcc': DT_mfcc, 'spectral': DT_spectral, 'prosodic': DT_prosodic, 'full': DT_full},
               "MLP": {'mfcc': MLP_mfcc, 'spectral': MLP_spectral, 'prosodic':MLP_prosodic, 'full':MLP_full},
               "RF": {'mfcc': RF_mfcc, 'spectral': RF_spectral, 'prosodic': RF_prosodic, 'full': RF_full},
               "LSTM": {'mfcc': LSTM_mfcc, 'spectral': LSTM_spectral, 'prosodic': LSTM_prosodic, 'full': LSTM_full},
               "LSTM_CNN": {'mfcc': LSTM_CNN_mfcc, 'spectral': LSTM_CNN_spectral, 'prosodic': LSTM_CNN_prosodic, 'full': LSTM_CNN_full},
               "CNN": {'mfcc': CNN_mfcc, 'spectral': CNN_spectral, 'prosodic': CNN_prosodic, 'full': CNN_full}
               }

spectral_scaler = joblib.load(root_path + 'spectral_features_standard_scaler.joblib')
prosodic_scaler = joblib.load(root_path + 'prosodic_features_standard_scaler.joblib')
full_scaler = joblib.load(root_path + 'full_features_standard_scaler.joblib')
mfcc_scaler = joblib.load(root_path + 'mfcc_features_standard_scaler.joblib')
scaler = {'mfcc': mfcc_scaler, 'spectral': spectral_scaler, 'prosodic': prosodic_scaler, 'full': full_scaler}

def Load_audio(audio_path):
  # Đọc file âm thanh và tần số lấy mẫu
  y, sr = librosa.load(audio_path, sr=48000)
  return y

# Bạn có thể sử dụng y và sr cho các mục đích xử lý âm thanh tiếp theo

def Spectral_extract_features(audio): # data là một file âm thanh thôi

    mfccs = librosa.feature.mfcc(y=audio, n_mfcc=40) # sr=sr,

    chroma = librosa.feature.chroma_stft(y=audio)

    spectral_contrast = librosa.feature.spectral_contrast(y=audio)

    tonal_centroid = librosa.feature.tonnetz(y=audio)

    mel_spectrogram = librosa.feature.melspectrogram(y=audio)
    feature_vector = np.concatenate((mfccs.mean(axis=1), chroma.mean(axis=1), spectral_contrast.mean(axis=1), tonal_centroid.mean(axis = 1), mel_spectrogram.mean(axis = 1)))

    return np.array(feature_vector)

def mfcc_extract_features(audio):
    mfccs = librosa.feature.mfcc(y=audio, n_mfcc=40) # sr=sr,
    mfcc_features = mfccs.mean(axis=1)
    return mfcc_features

def Prosodic_extract_features(audio):

    pitch, _ = librosa.piptrack(y=audio, n_fft=128, hop_length = 512)
    #print("pitch:",  pitch.mean(axis=1)) # ok
    duration = librosa.get_duration(y=audio)
    #print("duration:",duration) # ok
    energy = librosa.feature.rms(y=audio)
    #print("energy:", energy.shape)
    duration = np.array([duration]).reshape(1,1)
    #print("duration:", duration.shape)
    feature_vector = np.concatenate((pitch.mean(axis=1), duration.mean(axis=1), energy.mean(axis=1)))
    return np.array(feature_vector)

def Spectral_Prosodic(audio):
  Spectral_features = Spectral_extract_features(audio)
  Prosodic_features = Prosodic_extract_features(audio)
  full_features = np.concatenate((Spectral_features, Prosodic_features))
  return full_features

def Total_features(audio, scaler):
  features = {}
  features['spectral'] = scaler['spectral'].transform(Spectral_extract_features(audio).reshape(1, -1))
  features['prosodic'] = scaler['prosodic'].transform(Prosodic_extract_features(audio).reshape(1, -1))
  features['full'] = scaler['full'].transform(Spectral_Prosodic(audio).reshape(1, -1))
  features['mfcc'] = scaler['mfcc'].transform(mfcc_extract_features(audio).reshape(1, -1))
  return features



def total_predict(feature, total_model): # feature là một dict tổng hợp 4 loại đặc trưng
  result = {'mfcc': {}, 'spectral' : {}, 'prosodic': {}, 'full': {} }
  f_keys = ['mfcc', 'spectral', 'prosodic', 'full']
  ML = ['SVM', 'NB', 'DT', 'MLP', 'RF']
  m_keys = ['SVM', 'NB', 'DT', 'MLP', 'RF', 'LSTM', 'LSTM_CNN', 'CNN']
  for f in f_keys:
    for m in m_keys:
      try:
        if m in ML:
          model = total_model[m][f]
          result[f][m] = num2label[model.predict(feature[f])[0]]
        else:
          model = total_model[m][f]
          temp = [np.array(feature[f]).reshape((1,-1))]
          y_pred = model.predict(temp)
          y_pred_labels = np.argmax(y_pred, axis=1)[0]
          result[f][m] = num2label[y_pred_labels]
      except:
        print(f, m)
  return result

# def main_function(audio_path, scaler, total_model):
#   audio = Load_audio(audio_path)
#   feature = Total_features(audio, scaler)
#   labels = total_predict(feature, total_model)
#   table = pd.DataFrame.from_dict(labels).T
#   return table
def main_function(audio_path, scaler, total_model):
  audio = Load_audio(audio_path)
  feature = Total_features(audio, scaler)
  labels = total_predict(feature, total_model)
  table = pd.DataFrame.from_dict(labels).T
  table.insert(0, 'Đặc trưng', ['mfcc', 'spectral', 'prosodic', 'full'])
  return table

def main_interface(audio_file):
    # print("đường dẫn", audio_file)
    # sr, audio_data = audio_file
    # print(sr, audio_data)
    # if 1:
    #     audio_data = audio_data.astype(float)
    #     audio_data = librosa.resample(audio_data, orig_sr=sr, target_sr=48000)
    #     print("đã đọc lại file")
    # else:
    #     pass
    # # audio_path = "./uploaded.wav"    
    # # write(audio_path, 48000, np.int16(audio_data))
    # # print("đã lưu")
    result_table = main_function(audio_file, scaler, total_model)
    return result_table


# Create Gradio Interface
iface = gr.Interface(
    fn=main_interface,
    inputs=gr.Audio(type= 'filepath'),
    outputs=gr.Dataframe(headers=['Đặc trưng', 'SVM', 'NB', 'DT', 'MLP', 'RF', 'LSTM', 'LSTM_CNN', 'CNN']),
)

# Launch the Gradio Interface
iface.launch()