File size: 3,346 Bytes
0841a1b 9a3f681 0841a1b 6f28eab 9a3f681 6f28eab 9a3f681 0841a1b 9a3f681 6f28eab 354eea2 9a3f681 6f28eab 9a3f681 354eea2 6f28eab 354eea2 6f28eab 0841a1b 6f28eab 0841a1b 9a3f681 0841a1b 6f28eab 0841a1b 6f28eab 0841a1b 9a3f681 6f28eab 9a3f681 6f28eab 9a3f681 6f28eab 0841a1b 6f28eab 9a3f681 6f28eab 0841a1b 6f28eab 9a3f681 6f28eab 9a3f681 6f28eab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import gradio as gr
from huggingface_hub import InferenceClient
from datasets import load_dataset
# Safely load the PleIAs/common_corpus dataset
def load_common_corpus():
try:
print("Loading dataset...")
dataset = load_dataset("PleIAs/common_corpus")
print("Dataset loaded successfully!")
return dataset
except Exception as e:
print(f"Error loading dataset: {e}")
return None
common_corpus = load_common_corpus()
# Retrieve an example safely
def get_example_from_corpus(dataset, index):
if dataset and "train" in dataset:
try:
return dataset["train"][index]
except IndexError:
print("Index out of range for dataset.")
return {"text": "No example available"}
else:
print("Dataset not loaded correctly.")
return {"text": "Dataset not available."}
# Safely initialize the inference client
def initialize_client():
try:
print("Initializing inference client...")
client = InferenceClient("unsloth/Llama-3.2-1B-Instruct")
print("Inference client initialized successfully!")
return client
except Exception as e:
print(f"Error initializing inference client: {e}")
return None
client = initialize_client()
# Chatbot response logic
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
if not client:
return "Error: Inference client not initialized."
messages = [{"role": "system", "content": system_message}]
# Add historical interactions
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# Add user message
messages.append({"role": "user", "content": message})
try:
print("Sending request to model...")
response = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
).choices[0].message.content
print("Response received successfully!")
return response
except Exception as e:
print(f"Error during inference: {e}")
return "An error occurred while generating a response."
# Example: Retrieve an entry from the dataset
example_data = get_example_from_corpus(common_corpus, 0)
print("Example from dataset:", example_data)
# Gradio interface
def launch_demo():
try:
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot. Your name is Juninho.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
demo.launch()
except Exception as e:
print(f"Error launching Gradio app: {e}")
if __name__ == "__main__":
launch_demo() |