File size: 2,773 Bytes
0841a1b
 
9a3f681
0841a1b
9a3f681
 
 
 
 
 
 
0841a1b
9a3f681
 
 
354eea2
9a3f681
 
 
 
 
 
354eea2
9a3f681
354eea2
9a3f681
 
 
 
 
 
0841a1b
 
 
 
 
 
 
 
 
9a3f681
 
 
0841a1b
 
 
 
 
 
 
 
 
 
9a3f681
 
 
 
 
 
 
 
 
 
 
b72192d
0841a1b
9a3f681
 
354eea2
0841a1b
9a3f681
0841a1b
 
 
a7c10f7
354eea2
0841a1b
 
 
b72192d
0841a1b
 
 
 
 
 
 
 
9a3f681
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import gradio as gr
from huggingface_hub import InferenceClient
from datasets import load_dataset

# Load the PleIAs/common_corpus dataset with error handling
def load_common_corpus():
    try:
        return load_dataset("PleIAs/common_corpus")
    except Exception as e:
        print(f"Error loading dataset: {e}")
        return None

common_corpus = load_common_corpus()

# Retrieve an example from the dataset safely
def get_example_from_corpus(dataset, index):
    if dataset and "train" in dataset:
        try:
            return dataset["train"][index]
        except IndexError:
            print("Index out of range for dataset")
            return {"text": "No example available"}
    else:
        return {"text": "Dataset not loaded correctly"}

# Initialize the Inference Client with error handling
try:
    client = InferenceClient("unsloth/Llama-3.2-1B-Instruct")
except Exception as e:
    print(f"Error initializing inference client: {e}")
    client = None

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    if not client:
        return "Error: Inference client not initialized."

    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    try:
        response = client.chat_completion(
            messages,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
        ).choices[0].message.content
    except Exception as e:
        print(f"Error during inference: {e}")
        response = "An error occurred while generating a response."
    
    return response

# Example: Retrieve an entry from the dataset to demonstrate integration
example_data = get_example_from_corpus(common_corpus, 0)
print("Example from PleIAs/common_corpus:", example_data)

# Gradio interface with proper error handling
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot. Your name is Juninho.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

if __name__ == "__main__":
    try:
        demo.launch()
    except Exception as e:
        print(f"Error launching Gradio app: {e}")