import gradio as gr from huggingface_hub import InferenceClient from datasets import load_dataset # Load the PleIAs/common_corpus dataset with error handling def load_common_corpus(): try: return load_dataset("PleIAs/common_corpus") except Exception as e: print(f"Error loading dataset: {e}") return None common_corpus = load_common_corpus() # Retrieve an example from the dataset safely def get_example_from_corpus(dataset, index): if dataset and "train" in dataset: try: return dataset["train"][index] except IndexError: print("Index out of range for dataset") return {"text": "No example available"} else: return {"text": "Dataset not loaded correctly"} # Initialize the Inference Client with error handling try: client = InferenceClient("unsloth/Llama-3.2-1B-Instruct") except Exception as e: print(f"Error initializing inference client: {e}") client = None def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): if not client: return "Error: Inference client not initialized." messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) try: response = client.chat_completion( messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, ).choices[0].message.content except Exception as e: print(f"Error during inference: {e}") response = "An error occurred while generating a response." return response # Example: Retrieve an entry from the dataset to demonstrate integration example_data = get_example_from_corpus(common_corpus, 0) print("Example from PleIAs/common_corpus:", example_data) # Gradio interface with proper error handling demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot. Your name is Juninho.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": try: demo.launch() except Exception as e: print(f"Error launching Gradio app: {e}")