File size: 11,040 Bytes
6237b12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import streamlit as st
import pandas as pd
import pickle
from tqdm import tqdm
from Levenshtein import distance as lev
import joblib
from googletrans import Translator
from indictrans import Transliterator
from pyphonetics import RefinedSoundex
import enchant
from bs4 import BeautifulSoup
import re

def main():
    st.title('Text Processing App')

    dictn = enchant.Dict("en_US")
    rs = RefinedSoundex()
    normalized_string_final=[]
    translator = Translator()
    trn = Transliterator(source='eng', target='hin')

    with open(r'./english_vocab.pkl', "rb") as fp:
       english = pickle.load(fp)
    english_vocab=english 
    with open(r'./hinglish_vocab.pkl', "rb") as fp:
       hinglish = pickle.load(fp)
    hinglish_vocab=hinglish 

    english_vocab['and'] = ['and']
    english_vocab['is'] = ['is']

    def clean_tweet(tweet):
        text=re.sub(r'@ [A-Za-z0-9\']+','',tweet)
        text=BeautifulSoup(text,'lxml').get_text()
        text=re.sub(r'https (//)[A-Za-z0-9. ]*(/) [A-Za-z0-9]+','',text)
        text=re.sub(r'https[A-Za-z0-9/. ]*','',text)
        text=re.sub("[^a-zA-Z]"," ",text)
        text=re.sub(r'\bRT\b',' ',text)
        text=re.sub(r'\bnan\b',' ',text)
        return text

    input_text = st.text_area("Enter the text:")
    total_translated = []
    if st.button('Process'):
        # Create a DataFrame with the user input text
        data = {'Text': [input_text]}
        df1 = pd.DataFrame(data)

        # Apply the clean_tweet function to the user input text
        df1['Text'] = df1['Text'].apply(clean_tweet)

        # Extract the cleaned text
        cleaned_text = df1['Text'].tolist()[0]

        # Process the cleaned text further if needed
        total_text = [cleaned_text]
        st.write("Input Text:", total_text)
        
        for i in tqdm(total_text):
            test_text=i.split()

            # english word change from vocab
            not_changed_idx=[]
            for i in range(len(test_text)):
                not_changed_idx.append(0)
            
            changed_text=[]
            changed_idx=[]
        #     print("1st",changed_text)
            for i in range(len(test_text)):

                for key in english_vocab:
                    done=0
                    for val in  english_vocab[key]:
                        if(test_text[i]==val):
                            # print("KEY = ",key,"VAL =",val,"i =",test_text[i],"ADJENCENCY_DATA =",adjacency_data[key])
        #                     print("yahan par",key,val,test_text[i])
                            changed_text.append(key)
                            changed_idx.append(i)
                            not_changed_idx[i]=1
                            done=1
                            # print("breaking")
                            break
                    if done==1:
                        # print("breaking again")
                        break
                
            normalized_string=[]

            # making changed text and idx to a dictionary with two lists
            res = dict(zip(changed_idx, changed_text))
        #     print(res)
            for i in range(len(test_text)):
                try:
                    normalized_string.append(res[i])
                except:
                    normalized_string.append(test_text[i])
            print("English Normalized String : ",normalized_string)


            # hinglish word change
            test_list = [i for i in range(len(test_text))]
            changed_hing_idx = [i for i in test_list if i not in changed_idx]
            # print(changed_hing_idx)
            hinglish_text_part=[]
            for i in changed_hing_idx:
                try:
                    hinglish_text_part.append(test_text[i])
                except:
                    pass
        #     print(hinglish_text_part)

            changed_text2=[]
            changed_idx2=[]
        #     print("1st hing",changed_text2)
            for i in range(len(hinglish_text_part)):

                for key in hinglish_vocab:
                    done=0
                    for val in  hinglish_vocab[key]:
                        if(hinglish_text_part[i]==val):
                            # print("KEY = ",key,"VAL =",val,"i =",test_text[i],"ADJENCENCY_DATA =",adjacency_data[key])
        #                     print(key,val,hinglish_text_part[i])
                            changed_text2.append(key)
                            changed_idx2.append(i)
                            not_changed_idx[i]=1
                            done=1
                            # print("breaking")
                            break
                    if done==1:
                        # print("breaking again")
                        break


            # making changed text and idx to a dictionary with two lists
            normalized_string2=[]
        #     print("changed_text 2 ",changed_text2)
            res2 = dict(zip(changed_idx2, changed_text2))
        #     print(res2)
            for i in range(len(hinglish_text_part)):
                try:
                    normalized_string2.append(res2[i])
                except:
                    normalized_string2.append(hinglish_text_part[i])
        #     print("normalised string 2 :",normalized_string2)


            changed_idx=list(set(changed_idx))
            changed_idx.sort()
        #     print("changed idx",changed_idx)
            for i in changed_idx:
                normalized_string2.append(res[i])

            print("Hinglish Normalized String : ",normalized_string)
        #     print(not_changed_idx)


            # finding phoneme and leventise distance for unchanged word
            
            for i in range(len(not_changed_idx)):
                try:
                    if not_changed_idx[i]==0:
                        eng_phoneme_correction=[]
                        for j in english_vocab:
                            # print(normalized_string2[i],j)
                            try:
                                phoneme=rs.distance(normalized_string2[i],j)
                            except:
                                pass
                            if phoneme<=1:
                                eng_phoneme_correction.append(j)
                        eng_lev_correction=[]
                        for k in eng_phoneme_correction:
                            dist=lev(normalized_string2[i],k)
                            if dist <=2:
                                eng_lev_correction.append(k)
        #                 print(eng_phoneme_correction)
        #                 print(eng_lev_correction)


                        hing_phoneme_correction=[]
                        for j in hinglish_vocab:
                            try:
                                phoneme=rs.distance(normalized_string2[i],j)
                            except:
                                pass
                            if phoneme<=1:
                                hing_phoneme_correction.append(j)
                        hing_lev_correction=[]
                        for k in hing_phoneme_correction:
                            dist=lev(normalized_string2[i],k)
                            if dist <=2:
                                hing_lev_correction.append(k)
        #                 print(hing_phoneme_correction)
        #                 print(hing_lev_correction)

                        eng_lev_correction.extend(hing_lev_correction)
                        new_correction=eng_lev_correction
                        eng_lev_correction=[]
                        # hing_lev_correction=[]
        #                 print(eng_lev_correction)
                        
                        for l in new_correction:
                            dist=lev(normalized_string2[i],l)
                            eng_lev_correction.append(dist)
                        min_val=min(eng_lev_correction)
                        min_idx=eng_lev_correction.index(min_val)

                        
                        suggestion=dictn.suggest(new_correction[min_idx])
                        suggestion_lit=[]
                        for t in suggestion:
                            dist=lev(new_correction[min_idx],t)
                            suggestion_lit.append(dist)
                        min_suggestion_val=min(suggestion_lit)
                        min_suggestion_idx=suggestion_lit.index(min_suggestion_val)
        #                 print("Suggestions : ",min_suggestion_val)
        #                 print(suggestion[min_suggestion_idx])



                        normalized_string2[i]=suggestion[min_suggestion_idx]
                except:
                    pass
            normalized_string=normalized_string2
            normalized_string_final=normalized_string2
            print("Phoneme levenshtein Distionary suggestion Normalized String : ",normalized_string_final)
            # sentence tagging
            classifier=joblib.load(r"./classifer.joblib")
            classify=[]
            for i in normalized_string:
                test_classify=classifier(i)
                classify.append(test_classify[0].get("label"))

        #     print(normalized_string)
        #     print(classify)

            for i in range(len(classify)):
                if classify[i]=='en':
                    try:
                        normalized_string[i]=translator.translate(normalized_string[i] ,src='en',dest='hi').text
                    except:
                        normalized_string[i]="delete"
            print("English -> Hindi Translated String : ",normalized_string)


            conversion_list=[]

            for i in tqdm(normalized_string):
                conversion_list.append(trn.transform(i))

            print("Hinglish -> Hindi Transliterated String : ",conversion_list)
            conversion_list=normalized_string
            string=""
            sentence=[]
            for i in conversion_list:
                string=i+' '+string
            sentence.append(string)
            translated=[]
            for i in tqdm(sentence):
                try:
                    translated_text = translator.translate(i ,src='hi',dest='en')
                    translated.append(translated_text.text)
                except:
                    translated.append("delete")
            print("Hindi -> English Translated String : ",translated)
            total_translated.append(translated[0])

            total_translated=pd.DataFrame(total_translated)




        st.write("English Normalized String:", normalized_string)
        st.write("Hinglish Normalized String:", normalized_string)
        st.write("Phoneme Levenshtein Dictionary Suggestion Normalized String:", normalized_string_final)
        st.write("English -> Hindi Translated String:", normalized_string)
        st.write("Hinglish -> Hindi Transliterated String:", conversion_list)
        st.write("Hindi -> English Translated String:", translated)

if __name__ == '__main__':
    main()