Spaces:
Sleeping
Sleeping
File size: 19,089 Bytes
c3057bf 1c3ef38 c3057bf 1c3ef38 c3057bf cfa680c c3057bf 1c3ef38 c3057bf 1c3ef38 c3057bf cfa680c 1c3ef38 c3057bf cfa680c 1c3ef38 c3057bf cfa680c c3057bf 1c3ef38 c3057bf cfa680c c3057bf cfa680c c3057bf cfa680c c3057bf cfa680c c3057bf cfa680c c3057bf cfa680c c3057bf cfa680c c3057bf 1c3ef38 c3057bf cfa680c c3057bf cfa680c c3057bf cfa680c c3057bf cfa680c c3057bf cfa680c c3057bf cfa680c c3057bf cfa680c c3057bf cfa680c c3057bf cfa680c c3057bf cfa680c c3057bf cfa680c c3057bf c63e515 c3057bf cfa680c c3057bf cfa680c c3057bf 1c3ef38 c3057bf cfa680c c3057bf cfa680c c3057bf 1c3ef38 c3057bf 1c3ef38 c3057bf 1c3ef38 c3057bf cfa680c c3057bf cb081db c3057bf 1c3ef38 1edb596 c3057bf 6ae72b8 c3057bf cb081db c3057bf 1c3ef38 c3057bf 1c3ef38 c3057bf 1c3ef38 c3057bf 1c3ef38 c3057bf 1c3ef38 c3057bf 1c3ef38 c3057bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
import getpass
import os
import random
import re
from langchain_openai import ChatOpenAI
from langchain_core.globals import set_llm_cache
from langchain_core.documents import Document
from langchain_community.cache import SQLiteCache
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langgraph.graph import END, StateGraph, START
from langchain_core.output_parsers import StrOutputParser
from typing import List
from typing_extensions import TypedDict
import gradio as gr
from pydantic import BaseModel, Field
# For the reranking step
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import CrossEncoderReranker
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
from prompts import IMPROVE_PROMPT, ANSWER_PROMPT, HALLUCINATION_PROMPT, RESOLVER_PROMPT, REWRITER_PROMPT
TOPICS = [
"ICT strategy management",
"IT governance management & internal controls system",
"Internal audit & compliance management",
"ICT asset & architecture management",
"ICT risk management",
"Information security & human resource security management",
"IT configuration management",
"Cryptography, certificates & key management",
"Secure network & infrastructure management",
"Backup",
"Security testing",
"Threat-led penetration testing",
"Logging",
"Data and ICT system security",
"Physical and environmental security",
"Vulnerability & patch management",
"Identity and access management",
"ICT change management",
"IT project & project portfolio management",
"Acquisition, development & maintenance of ICT systems & EUA",
"ICT incident management",
"Monitoring, availability, capacity & performance management",
"ICT outsourcing & third-party risk management",
"Subcontracting management",
"ICT provider & service level management",
"ICT business continuity management"
]
class GradeHallucinations(BaseModel):
"""Binary score for hallucination present in generation answer."""
binary_score: str = Field(
description="Answer is grounded in the facts, 'yes' or 'no'"
)
class GradeAnswer(BaseModel):
"""Binary score to assess answer addresses question."""
binary_score: str = Field(
description="Answer addresses the question, 'yes' or 'no'"
)
class AnswerWithCitations(BaseModel):
answer: str = Field(
description="Comprehensive answer to the user's question with citations.",
)
citations: List[str] = Field(
description="List of the first 20 characters of sources cited in the answer."
)
class GraphState(TypedDict):
"""
Represents the state of our graph.
Attributes:
question: question
generation: LLM generation
documents: list of documents
"""
question: str
selected_sources: List[List[bool]]
generation: str
documents: List[str]
dora_docs: List[str]
dora_rts_docs: List[str]
dora_news_docs: List[str]
citations: List[str]
def _set_env(var: str):
if os.environ.get(var):
return
os.environ[var] = getpass.getpass(var + ":")
def load_vectorstores(paths: list):
# The dora vectorstore
embd = OpenAIEmbeddings()
model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
compressor = CrossEncoderReranker(model=model, top_n=4)
vectorstores = [FAISS.load_local(path, embd, allow_dangerous_deserialization=True) for path in paths]
base_retrievers = [vectorstore.as_retriever(search_type="mmr", search_kwargs={
"k": 7,
"fetch_k": 10,
"score_threshold": 0.8,
}) for vectorstore in vectorstores]
retrievers = [ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=retriever
) for retriever in base_retrievers]
return retrievers
def starts_with_ignoring_blanks(full_text, prefix):
# Normalize all types of blanks to regular spaces
normalized_full_text = re.sub(r'\s+', ' ', full_text.strip())
normalized_prefix = re.sub(r'\s+', ' ', prefix.strip())
# Check if the normalized full text starts with the normalized prefix
return normalized_full_text.startswith(normalized_prefix)
def match_citations_to_documents(citations: List[str], documents: List[Document]):
"""
Matches the citations to the documents by searching for the source and section in the documents
Args:
citations (List[str]): List of citations to match
documents (List[Document]): List of documents to search in
Returns:
dict: Dictionary with the matched documents, where the key is the citation number and the value is the matched document
"""
matched_documents = {}
for num, citation in enumerate(citations, 1):
# Extract the relevant parts from the citation (source and section)
print(f"checking the {num} citation: {citation}")
for doc in documents:
print(f"Does this: '{doc.page_content[:30]}' starts with this: '{citation}'?")
print(f"{doc.page_content[:40] =}")
print(f"{citation} =")
print(f"{doc.page_content[:40].startswith(citation) =}")
if starts_with_ignoring_blanks(doc.page_content[:40], citation): #Strangely, the 25 of the citation often become 35
print("yes")
if doc.metadata.get("section", None):
matched_documents[f"<sup>{num}</sup>"] = f"***{doc.metadata['source']} section {doc.metadata['section']}***: {doc.page_content}"
else:
matched_documents[f"<sup>{num}</sup>"] = f"***{doc.metadata['source']}***: {doc.page_content}"
break
else:
print("no")
return matched_documents
# Put all chains in fuctions
def dora_rewrite(state):
"""
Rewrites the question to fit dora wording
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, documents, that contains retrieved documents
"""
print("---TRANSLATE TO DORA---")
question = state["question"]
new_question = dora_question_rewriter.invoke({"question": question, "topics": TOPICS})
if new_question == "Thats an interesting question, but I dont think I can answer it based on my Dora knowledge.":
return {"question": new_question, "generation": new_question}
else:
return {"question": new_question}
def retrieve(state):
"""
Retrieve documents
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, documents, that contains retrieved documents
"""
print("---RETRIEVE---")
question = state["question"]
selected_sources = state["selected_sources"]
# Retrieval
dora_docs = dora_retriever.invoke(question) if selected_sources[0] else []
dora_rts_docs = dora_rts_retriever.invoke(question) if selected_sources[1] else []
dora_news_docs = dora_news_retriever.invoke(question) if selected_sources[2] else []
documents = dora_docs + dora_rts_docs + dora_news_docs
return {"documents": documents, "dora_docs": dora_docs, "dora_rts_docs": dora_rts_docs, "dora_news_docs": dora_news_docs}
def generate(state):
"""
Generate answer
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, generation, that contains LLM generation
"""
print("---GENERATE---")
question = state["question"]
documents = state["documents"]
# RAG generation
answer = answer_chain.invoke({"context": documents, "question": question})
generation = answer.answer
print(f"{answer.citations = }")
citations = match_citations_to_documents(answer.citations, documents)
print(f"{len(citations)} found, is that correct?")
return {"generation": generation, "citations": citations}
def transform_query(state):
"""
Transform the query to produce a better question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates question key with a re-phrased question
"""
print("---TRANSFORM QUERY---")
question = state["question"]
# Re-write question
better_question = question_rewriter.invoke({"question": question})
print(f"{better_question =}")
return {"question": better_question}
### Edges ###
def suitable_question(state):
"""
Determines whether the question is suitable.
Args:
state (dict): The current graph state
Returns:
str: Binary decision for next node to call
"""
print("---ASSESSING THE QUESTION---")
question = state["question"]
#print(f"{question = }")
if question == "Thats an interesting question, but I dont think I can answer it based on my Dora knowledge.":
return "end"
else:
return "retrieve"
def decide_to_generate(state):
"""
Determines whether to generate an answer, or re-generate a question.
Args:
state (dict): The current graph state
Returns:
str: Binary decision for next node to call
"""
print("---ASSESS GRADED DOCUMENTS---")
documents = state["documents"]
if not documents:
# All documents have been filtered check_relevance
# We will re-generate a new query
print(
"---DECISION: ALL DOCUMENTS ARE IRRELEVANT TO QUESTION, TRANSFORM QUERY---"
)
return "transform_query"
else:
# We have relevant documents, so generate answer
print(f"---DECISION: GENERATE WITH {len(documents)} DOCUMENTS---")
return "generate"
def grade_generation_v_documents_and_question(state):
"""
Determines whether the generation is grounded in the document and answers question.
Args:
state (dict): The current graph state
Returns:
str: Decision for next node to call
"""
print("---CHECK HALLUCINATIONS---")
question = state["question"]
documents = state["documents"]
generation = state["generation"]
score = hallucination_grader.invoke(
{"documents": documents, "generation": generation}
)
grade = score.binary_score
# Check hallucination
if grade == "yes":
print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---")
# Check question-answering
print("---GRADE GENERATION vs QUESTION---")
score = answer_grader.invoke({"question": question, "generation": generation})
grade = score.binary_score
if grade == "yes":
print("---DECISION: GENERATION ADDRESSES QUESTION---")
return "useful"
else:
print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---")
return "not useful"
else:
print("---DECISION: THOSE DOCUMENTS ARE NOT GROUNDING THIS GENERATION---")
return "not supported"
# Then compile the graph
def compile_graph():
workflow = StateGraph(GraphState)
# Define the nodes
workflow.add_node("dora_rewrite", dora_rewrite)
workflow.add_node("retrieve", retrieve)
workflow.add_node("generate", generate)
workflow.add_node("transform_query", transform_query)
# Define the edges
workflow.add_edge(START, "dora_rewrite")
workflow.add_conditional_edges(
"dora_rewrite",
suitable_question,
{
"retrieve": "retrieve",
"end": END,
},
)
workflow.add_conditional_edges(
"retrieve",
decide_to_generate,
{
"transform_query": "transform_query",
"generate": "generate",
},
)
workflow.add_edge("transform_query", "retrieve")
workflow.add_conditional_edges(
"generate",
grade_generation_v_documents_and_question,
{
"not supported": "transform_query",
"useful": END,
"not useful": "transform_query",
},
)
# Compile
app = workflow.compile()
return app
# Function to interact with Gradio
def generate_response(question: str, dora: bool, rts: bool, news: bool):
selected_sources = [dora, rts, news] if any([dora, rts, news]) else [True, False, False]
state = app.invoke({"question": question, "selected_sources": selected_sources})
return (
state["generation"],
('\n\n'.join([f"{num} - {doc}" for num, doc in state["citations"].items()])) if "citations" in state and state["citations"] else 'No citations available.',
# ('\n\n'.join([f"***{doc.metadata['source']} section {doc.metadata['section']}***: {doc.page_content}" for doc in state["dora_docs"]])) if "dora_docs" in state and state["dora_docs"] else 'No documents available.',
# ('\n\n'.join([f"***{doc.metadata['source']}, section {doc.metadata['section']}***: {doc.page_content}" for doc in state["dora_rts_docs"]])) if "dora_rts_docs" in state and state["dora_rts_docs"] else 'No documents available.',
# ('\n\n'.join([f"***{doc.metadata['source']}***: {doc.page_content}" for doc in state["dora_news_docs"]])) if "dora_news_docs" in state and state["dora_news_docs"] else 'No documents available.',
)
def show_loading(prompt: str):
return [prompt, "loading", "loading"]
def on_click():
return "I would love to hear your opinion: \[email protected]"
def clear_results():
return "", "", ""
def random_prompt():
return random.choice([
"How does DORA define critical ICT services and who must comply?",
"What are the key requirements for ICT risk management under DORA?",
"What are the reporting obligations under DORA for major incidents?",
"What third-party risk management requirements does DORA impose?",
"How does DORA's testing framework compare with the UK's CBEST framework?",
"Do ICT service providers fall under DORA's regulatory requirements?",
"How should I prepare for DORA's Threat-Led Penetration Testing (TLPT)?",
"What role do financial supervisors play in DORA compliance?",
"What penalties are applicable if an organization fails to comply with DORA?",
"How does DORA align with the NIS2 Directive in Europe?",
"Do insurance companies also fall under DORA's requirements?",
"What are the main differences between DORA and GDPR regarding incident reporting?",
"Are there specific resilience requirements for cloud service providers under DORA?",
"What are the main deadlines for compliance under DORA?",
"What steps should I take to ensure my third-party vendors are compliant with DORA?"
])
def load_css():
with open('./style.css', 'r') as file:
return file.read()
if __name__ == "__main__":
_set_env("OPENAI_API_KEY")
set_llm_cache(SQLiteCache(database_path=".cache.db"))
dora_retriever, dora_rts_retriever, dora_news_retriever = load_vectorstores(
["./dora_vectorstore_data_faiss.vst",
"./rts_eur_lex_vectorstore_faiss.vst",
"./bafin_news_vectorstore_faiss.vst",]
)
fast_llm = ChatOpenAI(model="gpt-3.5-turbo")
tool_llm = ChatOpenAI(model="gpt-4o")
rewrite_llm = ChatOpenAI(model="gpt-4o", temperature=1, cache=False)
dora_question_rewriter = IMPROVE_PROMPT | tool_llm | StrOutputParser()
answer_chain = ANSWER_PROMPT | tool_llm.with_structured_output(
AnswerWithCitations, include_raw=False
).with_config(run_name="GenerateAnswer")
hallucination_grader = HALLUCINATION_PROMPT | fast_llm.with_structured_output(GradeHallucinations)
answer_grader = RESOLVER_PROMPT | fast_llm.with_structured_output(GradeAnswer)
question_rewriter = REWRITER_PROMPT | rewrite_llm | StrOutputParser()
app = compile_graph()
with gr.Blocks(title='Artificial Compliance', css=load_css(), fill_width=True, fill_height=True,) as demo:
# theme=gr.themes.Monochrome(),
# Adding a sliding navbar
with gr.Column(scale=1, elem_id='navbar'):
gr.Image(
'./logo.png',
interactive=False,
show_label=False,
width=200,
height=200
)
with gr.Column():
dora_chatbot_button = gr.Checkbox(label="Dora", value=True, elem_classes=["navbar-button"])
document_workbench_button = gr.Checkbox(label="Published RTS documents", value=True, elem_classes=["navbar-button"])
newsfeed_button = gr.Checkbox(label="Bafin documents", value=True, elem_classes=["navbar-button"])
question_prompt = gr.Textbox(
value=random_prompt(),
label='What you always wanted to know about Dora:',
elem_classes=['textbox'],
lines=6
)
with gr.Row():
clear_results_button = gr.Button('Clear Results', variant='secondary', size="m")
submit_button = gr.Button('Submit', variant='primary', size="m")
# Adding a header
gr.Markdown("# The Doracle", elem_id="header")
gr.Markdown("----------------------------------------------------------------------------")
display_prompt = gr.Markdown(
value="",
label="question_prompt",
elem_id="header"
)
gr.Markdown("----------------------------------------------------------------------------")
with gr.Column(scale=1):
with gr.Row(elem_id='text_block'):
llm_generation = gr.Markdown(label="LLM Generation", elem_id="llm_generation")
gr.Markdown("----------------------------------------------------------------------------")
with gr.Row(elem_id='text_block'):
citations = gr.Markdown(label="citations", elem_id="llm_generation")
gr.Markdown("----------------------------------------------------------------------------")
# Adding a footer with impressum and contact
with gr.Row(elem_classes="footer"):
gr.Markdown("Contact", elem_id="clickable_markdown")
invisible_btn = gr.Button("", elem_id="invisible_button")
gr.on(
triggers=[question_prompt.submit, submit_button.click],
inputs=[question_prompt],
outputs=[display_prompt, llm_generation, citations],
fn=show_loading
).then(
outputs=[llm_generation, citations],
inputs=[question_prompt, dora_chatbot_button, document_workbench_button, newsfeed_button],
fn=generate_response
)
# Use gr.on() with the invisible button's click event
gr.on(
triggers=[invisible_btn.click],
fn=on_click,
outputs=[llm_generation]
)
# Clearing out all results when the appropriate button is clicked
clear_results_button.click(fn=clear_results, outputs=[display_prompt, llm_generation, citations])
demo.launch()
|