import getpass import os import random from langchain_openai import ChatOpenAI from langchain_core.globals import set_llm_cache from langchain_community.cache import SQLiteCache from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings from langgraph.graph import END, StateGraph, START from langchain_core.output_parsers import StrOutputParser import asyncio from typing import List from typing_extensions import TypedDict import gradio as gr from pydantic import BaseModel, Field from prompts import IMPROVE_PROMPT, RELEVANCE_PROMPT, ANSWER_PROMPT, HALLUCINATION_PROMPT, RESOLVER_PROMPT, REWRITER_PROMPT TOPICS = [ "ICT strategy management", "IT governance management & internal controls system", "Internal audit & compliance management", "ICT asset & architecture management", "ICT risk management", "Information security & human resource security management", "IT configuration management", "Cryptography, certificates & key management", "Secure network & infrastructure management", "Backup", "Security testing", "Threat-led penetration testing", "Logging", "Data and ICT system security", "Physical and environmental security", "Vulnerability & patch management", "Identity and access management", "ICT change management", "IT project & project portfolio management", "Acquisition, development & maintenance of ICT systems & EUA", "ICT incident management", "Monitoring, availability, capacity & performance management", "ICT outsourcing & third-party risk management", "Subcontracting management", "ICT provider & service level management", "ICT business continuity management" ] class GradeDocuments(BaseModel): """Binary score for relevance check on retrieved documents.""" binary_score: str = Field( description="Documents are relevant to the question, 'yes' or 'no'" ) class GradeHallucinations(BaseModel): """Binary score for hallucination present in generation answer.""" binary_score: str = Field( description="Answer is grounded in the facts, 'yes' or 'no'" ) class GradeAnswer(BaseModel): """Binary score to assess answer addresses question.""" binary_score: str = Field( description="Answer addresses the question, 'yes' or 'no'" ) class GraphState(TypedDict): """ Represents the state of our graph. Attributes: question: question generation: LLM generation documents: list of documents """ question: str selected_sources: List[List[bool]] generation: str documents: List[str] fitting_documents: List[str] dora_docs: List[str] dora_rts_docs: List[str] dora_news_docs: List[str] def _set_env(var: str): if os.environ.get(var): return os.environ[var] = getpass.getpass(var + ":") def load_vectorstores(paths: list): # The dora vectorstore embd = OpenAIEmbeddings() vectorstores = [FAISS.load_local(path, embd, allow_dangerous_deserialization=True) for path in paths] retrievers = [vectorstore.as_retriever(search_type="mmr", search_kwargs={ "k": 7, "fetch_k": 10, "score_threshold": 0.7, }) for vectorstore in vectorstores] return retrievers # Put all chains in fuctions async def dora_rewrite(state): """ Rewrites the question to fit dora wording Args: state (dict): The current graph state Returns: state (dict): New key added to state, documents, that contains retrieved documents """ print("---TRANSLATE TO DORA---") question = state["question"] new_question = await dora_question_rewriter.ainvoke({"question": question, "topics": TOPICS}) if new_question == "Thats an interesting question, but I dont think I can answer it based on my Dora knowledge.": return {"question": new_question, "generation": new_question} else: return {"question": new_question} async def retrieve(state): """ Retrieve documents Args: state (dict): The current graph state Returns: state (dict): New key added to state, documents, that contains retrieved documents """ print("---RETRIEVE---") question = state["question"] selected_sources = state["selected_sources"] # Retrieval documents = [] if selected_sources[0]: documents.extend(await dora_retriever.ainvoke(question)) if selected_sources[1]: documents.extend(await dora_rts_retriever.ainvoke(question)) if selected_sources[2]: documents.extend(await dora_news_retriever.ainvoke(question)) return {"documents": documents, "question": question} async def grade_documents(state): """ Determines whether the retrieved documents are relevant to the question. Args: state (dict): The current graph state Returns: state (dict): Updates documents key with only filtered relevant documents """ print("---CHECK DOCUMENTS RELEVANCE TO QUESTION---") question = state["question"] documents = state["documents"] fitting_documents = state["fitting_documents"] if "fitting_documents" in state else [] # Score each doc for d in documents: score = await retrieval_grader.ainvoke( {"question": question, "document": d.page_content} ) grade = score.binary_score if grade == "yes": #print("---GRADE: DOCUMENT RELEVANT---") if d in fitting_documents: #print(f"---Document {d.page_content} already in fitting documents---") continue fitting_documents.append(d) else: #print("---GRADE: DOCUMENT NOT RELEVANT---") continue return {"fitting_documents": fitting_documents} async def generate(state): """ Generate answer Args: state (dict): The current graph state Returns: state (dict): New key added to state, generation, that contains LLM generation """ print("---GENERATE---") question = state["question"] fitting_documents = state["fitting_documents"] dora_docs = [d for d in fitting_documents if d.metadata["source"].startswith("Dora")] dora_rts_docs = [d for d in fitting_documents if d.metadata["source"].startswith("Commission")] dora_news_docs = [d for d in fitting_documents if d.metadata["source"].startswith("https")] # RAG generation generation = await answer_chain.ainvoke({"context": fitting_documents, "question": question}) return {"generation": generation, "dora_docs": dora_docs, "dora_rts_docs": dora_rts_docs, "dora_news_docs": dora_news_docs} async def transform_query(state): """ Transform the query to produce a better question. Args: state (dict): The current graph state Returns: state (dict): Updates question key with a re-phrased question """ print("---TRANSFORM QUERY---") question = state["question"] # Re-write question better_question = await question_rewriter.ainvoke({"question": question}) print(f"{better_question =}") return {"question": better_question} ### Edges ### async def suitable_question(state): """ Determines whether the question is suitable. Args: state (dict): The current graph state Returns: str: Binary decision for next node to call """ print("---ASSESSING THE QUESTION---") question = state["question"] #print(f"{question = }") if question == "Thats an interesting question, but I dont think I can answer it based on my Dora knowledge.": return "end" else: return "retrieve" async def decide_to_generate(state): """ Determines whether to generate an answer, or re-generate a question. Args: state (dict): The current graph state Returns: str: Binary decision for next node to call """ print("---ASSESS GRADED DOCUMENTS---") fitting_documents = state["fitting_documents"] if not fitting_documents: # All documents have been filtered check_relevance # We will re-generate a new query print( "---DECISION: ALL DOCUMENTS ARE IRRELEVANT TO QUESTION, TRANSFORM QUERY---" ) return "transform_query" else: # We have relevant documents, so generate answer print(f"---DECISION: GENERATE WITH {len(fitting_documents)} DOCUMENTS---") return "generate" async def grade_generation_v_documents_and_question(state): """ Determines whether the generation is grounded in the document and answers question. Args: state (dict): The current graph state Returns: str: Decision for next node to call """ print("---CHECK HALLUCINATIONS---") question = state["question"] fitting_documents = state["fitting_documents"] generation = state["generation"] score = await hallucination_grader.ainvoke( {"documents": fitting_documents, "generation": generation} ) grade = score.binary_score # Check hallucination if grade == "yes": print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---") # Check question-answering print("---GRADE GENERATION vs QUESTION---") score = await answer_grader.ainvoke({"question": question, "generation": generation}) grade = score.binary_score if grade == "yes": print("---DECISION: GENERATION ADDRESSES QUESTION---") return "useful" else: print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---") return "not useful" else: for document in fitting_documents: print(document.page_content) print("---DECISION: THOSE DOCUMENTS ARE NOT GROUNDING THIS GENERATION---") print(f"{generation = }") return "not supported" # Then compile the graph def compile_graph(): workflow = StateGraph(GraphState) # Define the nodes workflow.add_node("dora_rewrite", dora_rewrite) # retrieve workflow.add_node("retrieve", retrieve) # retrieve workflow.add_node("grade_documents", grade_documents) # grade documents workflow.add_node("generate", generate) # generate workflow.add_node("transform_query", transform_query) # transform_query # Define the edges workflow.add_edge(START, "dora_rewrite") workflow.add_conditional_edges( "dora_rewrite", suitable_question, { "retrieve": "retrieve", "end": END, }, ) workflow.add_edge("retrieve", "grade_documents") workflow.add_conditional_edges( "grade_documents", decide_to_generate, { "transform_query": "transform_query", "generate": "generate", }, ) workflow.add_edge("transform_query", "retrieve") workflow.add_conditional_edges( "generate", grade_generation_v_documents_and_question, { "not supported": "generate", "useful": END, "not useful": "transform_query", }, ) # Compile app = workflow.compile() return app # Function to interact with Gradio async def generate_response(question: str, dora: bool, rts: bool, news: bool): selected_sources = [dora, rts, news] if any([dora, rts, news]) else [True, False, False] state = await app.ainvoke({"question": question, "selected_sources": selected_sources}) return ( state["generation"], ('\n\n'.join([f"***{doc.metadata['source']} section {doc.metadata['section']}***: {doc.page_content}" for doc in state["dora_docs"]])) if "dora_docs" in state and state["dora_docs"] else 'No documents available.', ('\n\n'.join([f"***{doc.metadata['source']}, section {doc.metadata['section']}***: {doc.page_content}" for doc in state["dora_rts_docs"]])) if "dora_rts_docs" in state and state["dora_rts_docs"] else 'No documents available.', ('\n\n'.join([f"***{doc.metadata['source']}***: {doc.page_content}" for doc in state["dora_news_docs"]])) if "dora_news_docs" in state and state["dora_news_docs"] else 'No documents available.', ) def show_loading(prompt: str): return [prompt, "loading", "loading", "loading", "loading"] def on_click(): return "I would love to hear your opinion: \nTilllangbein@gmail.com" def clear_results(): return "", "", "", "", "" def random_prompt(): return random.choice([ "Was ist der Unterschied zwischen TIBER-EU und DORA TLPT?", "Ich möchte ein SIEM einführen. Bitte gib mir eine Checkliste, was ich beachten muss.", "Was ist der Geltungsbereich der DORA? Bin ich als Finanzdienstleister im Leasinggeschäft betroffen?", "Ich hatte einen Ransomwarevorfall mit erheblichen Auswirkungen auf den Geschäftsbetrieb. Muss ich etwas melden?", "Was ist dieses DORA überhaupt?" ]) def load_css(): with open('style.css', 'r') as file: return file.read() def run_gradio(): with gr.Blocks(title='Artificial Compliance', theme=gr.themes.Monochrome(), css=load_css(), fill_width=True, fill_height=True,) as gradio_ui: # Adding a sliding navbar with gr.Column(scale=1, elem_id='navbar'): gr.Image( './logo.png', interactive=False, show_label=False, scale=1, width="50%", height="50%" ) with gr.Column(): dora_chatbot_button = gr.Checkbox(label="Dora", value=True, elem_classes=["navbar-button"]) document_workbench_button = gr.Checkbox(label="Published RTS documents", value=True, elem_classes=["navbar-button"]) newsfeed_button = gr.Checkbox(label="Bafin documents", value=True, elem_classes=["navbar-button"]) question_prompt = gr.Textbox( value=random_prompt(), label='What you always wanted to know about Dora:', elem_classes=['textbox'], lines=6 ) with gr.Row(): clear_results_button = gr.Button('Clear Results', variant='secondary', size="m") submit_button = gr.Button('Submit', variant='primary', size="m") # Adding a header gr.Markdown("# The Doracle", elem_id="header") gr.Markdown("----------------------------------------------------------------------------") display_prompt = gr.Markdown( value="", label="question_prompt", elem_id="header" ) gr.Markdown("----------------------------------------------------------------------------") with gr.Column(scale=1): with gr.Row(elem_id='text_block'): llm_generation = gr.Markdown(label="LLM Generation", elem_id="llm_generation") gr.Markdown("----------------------------------------------------------------------------") with gr.Row(elem_id='text_block'): dora_documents = gr.Markdown(label="DORA Documents") dora_rts_documents = gr.Markdown(label="DORA RTS Documents") dora_news_documents = gr.Markdown(label="Bafin supporting Documents") # Adding a footer with impressum and contact with gr.Row(elem_classes="footer"): gr.Markdown("Contact", elem_id="clickable_markdown") invisible_btn = gr.Button("", elem_id="invisible_button") gr.on( triggers=[question_prompt.submit, submit_button.click], inputs=[question_prompt], outputs=[display_prompt, llm_generation, dora_documents, dora_rts_documents, dora_news_documents], fn=show_loading ).then( outputs=[llm_generation, dora_documents, dora_rts_documents, dora_news_documents], inputs=[question_prompt, dora_chatbot_button, document_workbench_button, newsfeed_button], fn=generate_response ) # Use gr.on() with the invisible button's click event gr.on( triggers=[invisible_btn.click], fn=on_click, outputs=[llm_generation] ) # Clearing out all results when the appropriate button is clicked clear_results_button.click(fn=clear_results, outputs=[display_prompt, llm_generation, dora_documents, dora_rts_documents, dora_news_documents]) gradio_ui.launch() if __name__ == "__main__": _set_env("OPENAI_API_KEY") set_llm_cache(SQLiteCache(database_path=".cache.db")) dora_retriever, dora_rts_retriever, dora_news_retriever = load_vectorstores( ["./dora_vectorstore_data_faiss.vst", "./rts_eur_lex_vectorstore_faiss.vst", "./bafin_news_vectorstore_faiss.vst",] ) fast_llm = ChatOpenAI(model="gpt-3.5-turbo") smart_llm = ChatOpenAI(model="gpt-4-turbo", temperature=0.2, max_tokens=4096) tool_llm = ChatOpenAI(model="gpt-4o") rewrite_llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=1, cache=False) dora_question_rewriter = IMPROVE_PROMPT | tool_llm | StrOutputParser() retrieval_grader = RELEVANCE_PROMPT | fast_llm.with_structured_output(GradeDocuments) answer_chain = ANSWER_PROMPT | tool_llm | StrOutputParser() #former RAG chain hallucination_grader = HALLUCINATION_PROMPT | fast_llm.with_structured_output(GradeHallucinations) answer_grader = RESOLVER_PROMPT | fast_llm.with_structured_output(GradeAnswer) question_rewriter = REWRITER_PROMPT | rewrite_llm | StrOutputParser() app = compile_graph() # And finally, run the app run_gradio()