Audio2Hero / audio2hero.py
Tim-gubski's picture
zerogpu
5c463b7 verified
raw
history blame
1.99 kB
import sys
import librosa
from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor, Pop2PianoTokenizer
import torch
from post_processor import post_process
import tempfile
import shutil
def generate_midi(song_path, output_dir=None):
if output_dir is None:
output_dir = "./Outputs"
print("Loading Model...")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device}")
model = Pop2PianoForConditionalGeneration.from_pretrained("Tim-gubski/Audio2Hero").to(device)
model.eval()
processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano")
tokenizer = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano")
print("Processing Song...")
# load an example audio file and corresponding ground truth midi file
audio, sr = librosa.load(song_path, sr=44100) # feel free to change the sr to a suitable value.
inputs = processor(audio=audio, sampling_rate=sr, return_tensors="pt")
# generate model output
print("Generating output...")
model.generation_config.output_logits = True
model.generation_config.return_dict_in_generate = True
model_output = model.generate(inputs["input_features"].to(device))
tokenizer_output = processor.batch_decode(
token_ids=model_output.sequences.cpu(),
feature_extractor_output=inputs
)
# save to temp file
temp_dir = tempfile.TemporaryDirectory()
tokenizer_output["pretty_midi_objects"][0].write(f"{temp_dir.name}/temp.mid")
print("Post Processing...")
post_process(song_path, f"{temp_dir.name}/temp.mid", output_dir)
# zip folder
song_name = song_path.split("/")[-1]
song_name = ".".join(song_name.split(".")[0:-1])
shutil.make_archive(f"{output_dir}/{song_name}", 'zip', f"{output_dir}/{song_name}")
temp_dir.cleanup()
print("Done.")
return f"{output_dir}/{song_name}.zip"
if __name__=="__main__":
args = sys.argv[1:]
song_path = args[0]
output_dir = args[1]
generate_midi(song_path, output_dir)