Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
import librosa | |
from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor, Pop2PianoTokenizer | |
import torch | |
from post_processor import post_process | |
import tempfile | |
import shutil | |
def generate_midi(song_path, output_dir=None): | |
if output_dir is None: | |
output_dir = "./Outputs" | |
print("Loading Model...") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = Pop2PianoForConditionalGeneration.from_pretrained("Tim-gubski/Audio2Hero").to(device) | |
model.eval() | |
processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano") | |
tokenizer = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano") | |
print("Processing Song...") | |
# load an example audio file and corresponding ground truth midi file | |
audio, sr = librosa.load(song_path, sr=44100) # feel free to change the sr to a suitable value. | |
inputs = processor(audio=audio, sampling_rate=sr, return_tensors="pt") | |
# generate model output | |
print("Generating output...") | |
model.generation_config.output_logits = True | |
model.generation_config.return_dict_in_generate = True | |
model_output = model.generate(inputs["input_features"].to(device)) | |
tokenizer_output = processor.batch_decode( | |
token_ids=model_output.sequences.cpu(), | |
feature_extractor_output=inputs | |
) | |
# save to temp file | |
temp_dir = tempfile.TemporaryDirectory() | |
tokenizer_output["pretty_midi_objects"][0].write(f"{temp_dir.name}/temp.mid") | |
print("Post Processing...") | |
post_process(song_path, f"{temp_dir.name}/temp.mid", output_dir) | |
# zip folder | |
song_name = song_path.split("/")[-1] | |
song_name = ".".join(song_name.split(".")[0:-1]) | |
shutil.make_archive(f"{output_dir}/{song_name}", 'zip', f"{output_dir}/{song_name}") | |
temp_dir.cleanup() | |
print("Done.") | |
return f"{output_dir}/{song_name}.zip" | |
if __name__=="__main__": | |
args = sys.argv[1:] | |
song_path = args[0] | |
output_dir = args[1] | |
generate_midi(song_path, output_dir) | |