Upload 2 files
Browse files- app.py +462 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,462 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer, AutoModel
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import random
|
6 |
+
import json
|
7 |
+
|
8 |
+
# Load RecipeBERT model (for semantic ingredient combination)
|
9 |
+
bert_model_name = "alexdseo/RecipeBERT"
|
10 |
+
bert_tokenizer = AutoTokenizer.from_pretrained(bert_model_name)
|
11 |
+
bert_model = AutoModel.from_pretrained(bert_model_name)
|
12 |
+
bert_model.eval()
|
13 |
+
|
14 |
+
# Load T5 recipe generation model
|
15 |
+
MODEL_NAME_OR_PATH = "flax-community/t5-recipe-generation"
|
16 |
+
t5_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True)
|
17 |
+
t5_model = FlaxAutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME_OR_PATH)
|
18 |
+
|
19 |
+
# Token mapping for T5 model output processing
|
20 |
+
special_tokens = t5_tokenizer.all_special_tokens
|
21 |
+
tokens_map = {
|
22 |
+
"<sep>": "--",
|
23 |
+
"<section>": "\n"
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
def get_embedding(text):
|
28 |
+
"""Computes embedding for a text with Mean Pooling over all tokens"""
|
29 |
+
inputs = bert_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
30 |
+
with torch.no_grad():
|
31 |
+
outputs = bert_model(**inputs)
|
32 |
+
|
33 |
+
# Mean Pooling - take average of all token embeddings
|
34 |
+
attention_mask = inputs['attention_mask']
|
35 |
+
token_embeddings = outputs.last_hidden_state
|
36 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
37 |
+
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
38 |
+
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
39 |
+
|
40 |
+
return (sum_embeddings / sum_mask).squeeze(0)
|
41 |
+
|
42 |
+
|
43 |
+
def average_embedding(embedding_list):
|
44 |
+
"""Computes the average of a list of embeddings"""
|
45 |
+
tensors = torch.stack([emb for _, emb in embedding_list])
|
46 |
+
return tensors.mean(dim=0)
|
47 |
+
|
48 |
+
|
49 |
+
def get_cosine_similarity(vec1, vec2):
|
50 |
+
"""Computes the cosine similarity between two vectors"""
|
51 |
+
if torch.is_tensor(vec1):
|
52 |
+
vec1 = vec1.detach().numpy()
|
53 |
+
if torch.is_tensor(vec2):
|
54 |
+
vec2 = vec2.detach().numpy()
|
55 |
+
|
56 |
+
# Make sure vectors have the right shape (flatten if necessary)
|
57 |
+
vec1 = vec1.flatten()
|
58 |
+
vec2 = vec2.flatten()
|
59 |
+
|
60 |
+
dot_product = np.dot(vec1, vec2)
|
61 |
+
norm_a = np.linalg.norm(vec1)
|
62 |
+
norm_b = np.linalg.norm(vec2)
|
63 |
+
|
64 |
+
# Avoid division by zero
|
65 |
+
if norm_a == 0 or norm_b == 0:
|
66 |
+
return 0
|
67 |
+
|
68 |
+
return dot_product / (norm_a * norm_b)
|
69 |
+
|
70 |
+
|
71 |
+
def get_combined_scores(query_vector, embedding_list, all_good_embeddings, avg_weight=0.6):
|
72 |
+
"""Computes combined score considering both similarity to average and individual ingredients"""
|
73 |
+
results = []
|
74 |
+
|
75 |
+
for name, emb in embedding_list:
|
76 |
+
# Similarity to average vector
|
77 |
+
avg_similarity = get_cosine_similarity(query_vector, emb)
|
78 |
+
|
79 |
+
# Average similarity to individual ingredients
|
80 |
+
individual_similarities = [get_cosine_similarity(good_emb, emb)
|
81 |
+
for _, good_emb in all_good_embeddings]
|
82 |
+
avg_individual_similarity = sum(individual_similarities) / len(individual_similarities)
|
83 |
+
|
84 |
+
# Combined score (weighted average)
|
85 |
+
combined_score = avg_weight * avg_similarity + (1 - avg_weight) * avg_individual_similarity
|
86 |
+
|
87 |
+
results.append((name, emb, combined_score))
|
88 |
+
|
89 |
+
# Sort by combined score (descending)
|
90 |
+
results.sort(key=lambda x: x[2], reverse=True)
|
91 |
+
return results
|
92 |
+
|
93 |
+
|
94 |
+
def find_best_ingredients(required_ingredients, available_ingredients, max_ingredients=6, avg_weight=0.6):
|
95 |
+
"""
|
96 |
+
Finds the best ingredients based on RecipeBERT embeddings.
|
97 |
+
"""
|
98 |
+
# Clean and prepare ingredient lists
|
99 |
+
required_ingredients = [ing.strip() for ing in required_ingredients if ing.strip()]
|
100 |
+
available_ingredients = [ing.strip() for ing in available_ingredients if ing.strip()]
|
101 |
+
|
102 |
+
# Remove duplicates
|
103 |
+
required_ingredients = list(set(required_ingredients))
|
104 |
+
available_ingredients = list(set([i for i in available_ingredients if i not in required_ingredients]))
|
105 |
+
|
106 |
+
# Special case: If no required ingredients, randomly select one from available ingredients
|
107 |
+
if not required_ingredients and available_ingredients:
|
108 |
+
random_ingredient = random.choice(available_ingredients)
|
109 |
+
required_ingredients = [random_ingredient]
|
110 |
+
available_ingredients = [i for i in available_ingredients if i != random_ingredient]
|
111 |
+
|
112 |
+
# If still no ingredients or already at max capacity
|
113 |
+
if not required_ingredients or len(required_ingredients) >= max_ingredients:
|
114 |
+
return required_ingredients[:max_ingredients]
|
115 |
+
|
116 |
+
# If no additional ingredients available
|
117 |
+
if not available_ingredients:
|
118 |
+
return required_ingredients
|
119 |
+
|
120 |
+
# Calculate embeddings for all ingredients
|
121 |
+
embed_required = [(e, get_embedding(e)) for e in required_ingredients]
|
122 |
+
embed_available = [(e, get_embedding(e)) for e in available_ingredients]
|
123 |
+
|
124 |
+
# Number of ingredients to add
|
125 |
+
num_to_add = min(max_ingredients - len(required_ingredients), len(available_ingredients))
|
126 |
+
|
127 |
+
# Copy required ingredients to final list
|
128 |
+
final_ingredients = embed_required.copy()
|
129 |
+
|
130 |
+
# Add best ingredients
|
131 |
+
for _ in range(num_to_add):
|
132 |
+
# Calculate average vector of current combination
|
133 |
+
avg = average_embedding(final_ingredients)
|
134 |
+
|
135 |
+
# Calculate combined scores for all candidates
|
136 |
+
candidates = get_combined_scores(avg, embed_available, final_ingredients, avg_weight)
|
137 |
+
|
138 |
+
# If no candidates left, break
|
139 |
+
if not candidates:
|
140 |
+
break
|
141 |
+
|
142 |
+
# Choose best ingredient
|
143 |
+
best_name, best_embedding, _ = candidates[0]
|
144 |
+
|
145 |
+
# Add best ingredient to final list
|
146 |
+
final_ingredients.append((best_name, best_embedding))
|
147 |
+
|
148 |
+
# Remove ingredient from available ingredients
|
149 |
+
embed_available = [item for item in embed_available if item[0] != best_name]
|
150 |
+
|
151 |
+
# Extract only ingredient names
|
152 |
+
return [name for name, _ in final_ingredients]
|
153 |
+
|
154 |
+
|
155 |
+
def skip_special_tokens(text, special_tokens):
|
156 |
+
"""Removes special tokens from text"""
|
157 |
+
for token in special_tokens:
|
158 |
+
text = text.replace(token, "")
|
159 |
+
return text
|
160 |
+
|
161 |
+
|
162 |
+
def target_postprocessing(texts, special_tokens):
|
163 |
+
"""Post-processes generated text"""
|
164 |
+
if not isinstance(texts, list):
|
165 |
+
texts = [texts]
|
166 |
+
|
167 |
+
new_texts = []
|
168 |
+
for text in texts:
|
169 |
+
text = skip_special_tokens(text, special_tokens)
|
170 |
+
|
171 |
+
for k, v in tokens_map.items():
|
172 |
+
text = text.replace(k, v)
|
173 |
+
|
174 |
+
new_texts.append(text)
|
175 |
+
|
176 |
+
return new_texts
|
177 |
+
|
178 |
+
|
179 |
+
def validate_recipe_ingredients(recipe_ingredients, expected_ingredients, tolerance=0):
|
180 |
+
"""Validates if the recipe contains approximately the expected ingredients."""
|
181 |
+
recipe_count = len([ing for ing in recipe_ingredients if ing and ing.strip()])
|
182 |
+
expected_count = len(expected_ingredients)
|
183 |
+
return abs(recipe_count - expected_count) <= tolerance
|
184 |
+
|
185 |
+
|
186 |
+
def generate_recipe_with_t5(ingredients_list, max_retries=5):
|
187 |
+
"""Generates a recipe using the T5 recipe generation model with validation."""
|
188 |
+
original_ingredients = ingredients_list.copy()
|
189 |
+
|
190 |
+
for attempt in range(max_retries):
|
191 |
+
try:
|
192 |
+
# For retries after the first attempt, shuffle the ingredients
|
193 |
+
if attempt > 0:
|
194 |
+
current_ingredients = original_ingredients.copy()
|
195 |
+
random.shuffle(current_ingredients)
|
196 |
+
else:
|
197 |
+
current_ingredients = ingredients_list
|
198 |
+
|
199 |
+
# Format ingredients as a comma-separated string
|
200 |
+
ingredients_string = ", ".join(current_ingredients)
|
201 |
+
prefix = "items: "
|
202 |
+
|
203 |
+
# Generation settings
|
204 |
+
generation_kwargs = {
|
205 |
+
"max_length": 512,
|
206 |
+
"min_length": 64,
|
207 |
+
"do_sample": True,
|
208 |
+
"top_k": 60,
|
209 |
+
"top_p": 0.95
|
210 |
+
}
|
211 |
+
|
212 |
+
# Tokenize input
|
213 |
+
inputs = t5_tokenizer(
|
214 |
+
prefix + ingredients_string,
|
215 |
+
max_length=256,
|
216 |
+
padding="max_length",
|
217 |
+
truncation=True,
|
218 |
+
return_tensors="jax"
|
219 |
+
)
|
220 |
+
|
221 |
+
# Generate text
|
222 |
+
output_ids = t5_model.generate(
|
223 |
+
input_ids=inputs.input_ids,
|
224 |
+
attention_mask=inputs.attention_mask,
|
225 |
+
**generation_kwargs
|
226 |
+
)
|
227 |
+
|
228 |
+
# Decode and post-process
|
229 |
+
generated = output_ids.sequences
|
230 |
+
generated_text = target_postprocessing(
|
231 |
+
t5_tokenizer.batch_decode(generated, skip_special_tokens=False),
|
232 |
+
special_tokens
|
233 |
+
)[0]
|
234 |
+
|
235 |
+
# Parse sections
|
236 |
+
recipe = {}
|
237 |
+
sections = generated_text.split("\n")
|
238 |
+
for section in sections:
|
239 |
+
section = section.strip()
|
240 |
+
if section.startswith("title:"):
|
241 |
+
recipe["title"] = section.replace("title:", "").strip().capitalize()
|
242 |
+
elif section.startswith("ingredients:"):
|
243 |
+
ingredients_text = section.replace("ingredients:", "").strip()
|
244 |
+
recipe["ingredients"] = [item.strip().capitalize() for item in ingredients_text.split("--") if
|
245 |
+
item.strip()]
|
246 |
+
elif section.startswith("directions:"):
|
247 |
+
directions_text = section.replace("directions:", "").strip()
|
248 |
+
recipe["directions"] = [step.strip().capitalize() for step in directions_text.split("--") if
|
249 |
+
step.strip()]
|
250 |
+
|
251 |
+
# If title is missing, create one
|
252 |
+
if "title" not in recipe:
|
253 |
+
recipe["title"] = f"Recipe with {', '.join(current_ingredients[:3])}"
|
254 |
+
|
255 |
+
# Ensure all sections exist
|
256 |
+
if "ingredients" not in recipe:
|
257 |
+
recipe["ingredients"] = current_ingredients
|
258 |
+
if "directions" not in recipe:
|
259 |
+
recipe["directions"] = ["No directions generated"]
|
260 |
+
|
261 |
+
# Validate the recipe
|
262 |
+
if validate_recipe_ingredients(recipe["ingredients"], original_ingredients, tolerance=1):
|
263 |
+
return recipe
|
264 |
+
else:
|
265 |
+
if attempt == max_retries - 1:
|
266 |
+
return recipe
|
267 |
+
|
268 |
+
except Exception as e:
|
269 |
+
if attempt == max_retries - 1:
|
270 |
+
return {
|
271 |
+
"title": f"Recipe with {original_ingredients[0] if original_ingredients else 'ingredients'}",
|
272 |
+
"ingredients": original_ingredients,
|
273 |
+
"directions": ["Error generating recipe instructions"]
|
274 |
+
}
|
275 |
+
|
276 |
+
# Fallback
|
277 |
+
return {
|
278 |
+
"title": f"Recipe with {original_ingredients[0] if original_ingredients else 'ingredients'}",
|
279 |
+
"ingredients": original_ingredients,
|
280 |
+
"directions": ["Error generating recipe instructions"]
|
281 |
+
}
|
282 |
+
|
283 |
+
|
284 |
+
def generate_recipe_interface(required_ingredients_text, available_ingredients_text, max_ingredients):
|
285 |
+
"""Main interface function for Gradio"""
|
286 |
+
try:
|
287 |
+
# Parse ingredient inputs
|
288 |
+
required_ingredients = []
|
289 |
+
available_ingredients = []
|
290 |
+
|
291 |
+
if required_ingredients_text:
|
292 |
+
required_ingredients = [ing.strip() for ing in required_ingredients_text.split(',') if ing.strip()]
|
293 |
+
|
294 |
+
if available_ingredients_text:
|
295 |
+
available_ingredients = [ing.strip() for ing in available_ingredients_text.split(',') if ing.strip()]
|
296 |
+
|
297 |
+
# Validate inputs
|
298 |
+
if not required_ingredients and not available_ingredients:
|
299 |
+
return "β **Error:** Please provide at least some ingredients!", "", "", ""
|
300 |
+
|
301 |
+
# Find best ingredient combination
|
302 |
+
optimized_ingredients = find_best_ingredients(
|
303 |
+
required_ingredients,
|
304 |
+
available_ingredients,
|
305 |
+
max_ingredients
|
306 |
+
)
|
307 |
+
|
308 |
+
# Generate recipe
|
309 |
+
recipe = generate_recipe_with_t5(optimized_ingredients)
|
310 |
+
|
311 |
+
# Format output
|
312 |
+
title = f"π½οΈ **{recipe['title']}**"
|
313 |
+
|
314 |
+
ingredients_formatted = "## π Ingredients:\n" + "\n".join([f"β’ {ing}" for ing in recipe['ingredients']])
|
315 |
+
|
316 |
+
directions_formatted = "## π¨βπ³ Instructions:\n" + "\n".join(
|
317 |
+
[f"{i + 1}. {step}" for i, step in enumerate(recipe['directions'])])
|
318 |
+
|
319 |
+
used_ingredients = "## β
Used Ingredients:\n" + ", ".join(optimized_ingredients)
|
320 |
+
|
321 |
+
return title, ingredients_formatted, directions_formatted, used_ingredients
|
322 |
+
|
323 |
+
except Exception as e:
|
324 |
+
return f"β **Error:** {str(e)}", "", "", ""
|
325 |
+
|
326 |
+
|
327 |
+
def generate_recipe_api(required_ingredients_text, available_ingredients_text, max_ingredients):
|
328 |
+
"""API-compatible function that returns JSON format"""
|
329 |
+
try:
|
330 |
+
# Parse ingredient inputs
|
331 |
+
required_ingredients = []
|
332 |
+
available_ingredients = []
|
333 |
+
|
334 |
+
if required_ingredients_text:
|
335 |
+
required_ingredients = [ing.strip() for ing in required_ingredients_text.split(',') if ing.strip()]
|
336 |
+
|
337 |
+
if available_ingredients_text:
|
338 |
+
available_ingredients = [ing.strip() for ing in available_ingredients_text.split(',') if ing.strip()]
|
339 |
+
|
340 |
+
# Validate inputs
|
341 |
+
if not required_ingredients and not available_ingredients:
|
342 |
+
return json.dumps({"error": "No ingredients provided"}, indent=2)
|
343 |
+
|
344 |
+
# Find best ingredient combination
|
345 |
+
optimized_ingredients = find_best_ingredients(
|
346 |
+
required_ingredients,
|
347 |
+
available_ingredients,
|
348 |
+
max_ingredients
|
349 |
+
)
|
350 |
+
|
351 |
+
# Generate recipe
|
352 |
+
recipe = generate_recipe_with_t5(optimized_ingredients)
|
353 |
+
|
354 |
+
# Format for API response
|
355 |
+
api_response = {
|
356 |
+
'title': recipe['title'],
|
357 |
+
'ingredients': recipe['ingredients'],
|
358 |
+
'directions': recipe['directions'],
|
359 |
+
'used_ingredients': optimized_ingredients
|
360 |
+
}
|
361 |
+
|
362 |
+
return json.dumps(api_response, indent=2, ensure_ascii=False)
|
363 |
+
|
364 |
+
except Exception as e:
|
365 |
+
return json.dumps({"error": f"Error in recipe generation: {str(e)}"}, indent=2)
|
366 |
+
|
367 |
+
|
368 |
+
# Create Gradio interface
|
369 |
+
with gr.Blocks(title="π³ AI Recipe Generator", theme=gr.themes.Soft()) as demo:
|
370 |
+
gr.Markdown("""
|
371 |
+
# π³ AI Recipe Generator
|
372 |
+
|
373 |
+
Generate delicious recipes using AI! This tool uses **RecipeBERT** to find the best ingredient combinations and **T5** to generate complete recipes.
|
374 |
+
|
375 |
+
## How to use:
|
376 |
+
1. **Required Ingredients:** Enter ingredients you must use (comma-separated)
|
377 |
+
2. **Available Ingredients:** Enter additional ingredients you have available (comma-separated)
|
378 |
+
3. **Max Ingredients:** Set the maximum number of ingredients for your recipe
|
379 |
+
4. Click **Generate Recipe** to create your personalized recipe!
|
380 |
+
""")
|
381 |
+
|
382 |
+
with gr.Tab("π½οΈ Recipe Generator"):
|
383 |
+
with gr.Row():
|
384 |
+
with gr.Column():
|
385 |
+
required_ingredients = gr.Textbox(
|
386 |
+
label="π― Required Ingredients",
|
387 |
+
placeholder="chicken, rice, onions",
|
388 |
+
info="Ingredients that must be included in the recipe (comma-separated)"
|
389 |
+
)
|
390 |
+
available_ingredients = gr.Textbox(
|
391 |
+
label="π₯ Available Ingredients",
|
392 |
+
placeholder="garlic, tomatoes, basil, cheese",
|
393 |
+
info="Additional ingredients you have available (comma-separated)"
|
394 |
+
)
|
395 |
+
max_ingredients = gr.Slider(
|
396 |
+
minimum=3, maximum=12, value=7, step=1,
|
397 |
+
label="π Maximum Ingredients",
|
398 |
+
info="Maximum number of ingredients to use in the recipe"
|
399 |
+
)
|
400 |
+
generate_btn = gr.Button("π Generate Recipe", variant="primary", size="lg")
|
401 |
+
|
402 |
+
with gr.Column():
|
403 |
+
recipe_title = gr.Markdown()
|
404 |
+
used_ingredients = gr.Markdown()
|
405 |
+
|
406 |
+
with gr.Row():
|
407 |
+
with gr.Column():
|
408 |
+
recipe_ingredients = gr.Markdown()
|
409 |
+
with gr.Column():
|
410 |
+
recipe_directions = gr.Markdown()
|
411 |
+
|
412 |
+
with gr.Tab("π API Format"):
|
413 |
+
gr.Markdown("""
|
414 |
+
## API Response Format
|
415 |
+
This tab shows the response in JSON format, compatible with your Flutter app.
|
416 |
+
""")
|
417 |
+
|
418 |
+
with gr.Row():
|
419 |
+
with gr.Column():
|
420 |
+
api_required = gr.Textbox(
|
421 |
+
label="Required Ingredients",
|
422 |
+
placeholder="chicken, rice, onions"
|
423 |
+
)
|
424 |
+
api_available = gr.Textbox(
|
425 |
+
label="Available Ingredients",
|
426 |
+
placeholder="garlic, tomatoes, basil"
|
427 |
+
)
|
428 |
+
api_max = gr.Slider(
|
429 |
+
minimum=3, maximum=12, value=7, step=1,
|
430 |
+
label="Max Ingredients"
|
431 |
+
)
|
432 |
+
api_generate_btn = gr.Button("Generate JSON", variant="secondary")
|
433 |
+
|
434 |
+
with gr.Column():
|
435 |
+
api_output = gr.Code(language="json", label="API Response")
|
436 |
+
|
437 |
+
# Event handlers
|
438 |
+
generate_btn.click(
|
439 |
+
fn=generate_recipe_interface,
|
440 |
+
inputs=[required_ingredients, available_ingredients, max_ingredients],
|
441 |
+
outputs=[recipe_title, recipe_ingredients, recipe_directions, used_ingredients]
|
442 |
+
)
|
443 |
+
|
444 |
+
api_generate_btn.click(
|
445 |
+
fn=generate_recipe_api,
|
446 |
+
inputs=[api_required, api_available, api_max],
|
447 |
+
outputs=[api_output]
|
448 |
+
)
|
449 |
+
|
450 |
+
# Example inputs
|
451 |
+
gr.Examples(
|
452 |
+
examples=[
|
453 |
+
["chicken, rice", "onions, garlic, tomatoes, basil", 6],
|
454 |
+
["eggs, flour", "milk, sugar, vanilla, butter", 7],
|
455 |
+
["salmon", "lemon, dill, potatoes, asparagus", 5],
|
456 |
+
["", "beef, potatoes, carrots, onions, garlic", 6]
|
457 |
+
],
|
458 |
+
inputs=[required_ingredients, available_ingredients, max_ingredients]
|
459 |
+
)
|
460 |
+
|
461 |
+
if __name__ == "__main__":
|
462 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
transformers>=4.30.0
|
3 |
+
torch>=2.0.0
|
4 |
+
numpy>=1.21.0
|
5 |
+
flax>=0.7.0
|
6 |
+
jax>=0.4.0
|
7 |
+
jaxlib>=0.4.0
|