import gradio as gr from fastai.vision.all import * learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): pred,idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i,_ in enumerate(labels)} with open("article.md") as f: article = f.read() image = gr.inputs.Image(shape=(256,256)) label = gr.outputs.Label() examples = ['house1.jpg','house2.jpg','house3.jpg','house4.jpg','house5.jpg'] title = "Storm Damaged House Classifier with fast.ai" description = "Has your house possibly been damaged by recent storms, use fast.ai to detect damage to your home with this fine-tuned resnet 50 model" intf = gr.Interface(fn=predict, inputs=image, outputs=label, examples=examples,title=title,description=description, article=article) intf.launch()