Timmyafolami commited on
Commit
39db067
·
verified ·
1 Parent(s): 71ab4df

Update utils.py

Browse files
Files changed (1) hide show
  1. utils.py +47 -47
utils.py CHANGED
@@ -1,47 +1,47 @@
1
- from langchain_core.prompts import ChatPromptTemplate
2
- from langchain_groq import ChatGroq
3
- from dotenv import load_dotenv
4
- from langchain.chains import ConversationChain
5
- from langchain.memory import ConversationBufferWindowMemory
6
- from langchain_core.prompts.prompt import PromptTemplate
7
- import streamlit as st
8
- import os
9
-
10
- load_dotenv()
11
-
12
- # setting up groq api key
13
- os.environ["GROQ_API_KEY"] = st.secrets.GROQ_API_KEY
14
-
15
- # chat set up
16
- class DataScienceConsultant:
17
- def __init__(self, temperature=0.5, model_name="llama3-8b-8192"):
18
- self.chat = ChatGroq(temperature=temperature, model_name=model_name)
19
- self.template = """You are a Data Science Consultant. You have over 20 years of experience in the field.
20
- You are currently working with a client to create synthetic data for their product.
21
- You don't know anything about the product yet, which is why you want to ask the client some questions to understand the data requirements.
22
- This is the workflow you have been following:
23
- 1. Converse with the client to understand the data requirements.
24
- 2. Ask questions about the product the client is working on.
25
- 3. Ask for possible columns and the data types.
26
- 4. Ask for the number of rows and the distribution of the data.
27
- 5. Create a Python script that the client can work with to generate the data.
28
- 6. Review the generated code with the client requirements.
29
-
30
- Return the code to the client for review.
31
-
32
- Current conversation:
33
- {history}
34
- Human: {input}
35
- AI Assistant:"""
36
- self.prompt = PromptTemplate(input_variables=["history", "input"], template=self.template)
37
- self.conversation = ConversationChain(
38
- prompt=self.prompt,
39
- llm=self.chat,
40
- verbose=True,
41
- memory=ConversationBufferWindowMemory(k=10, ai_prefix="AI Assistant"),
42
- )
43
-
44
- def predict(self, input_text):
45
- return self.conversation.predict(input=input_text)
46
-
47
-
 
1
+ from langchain_core.prompts import ChatPromptTemplate
2
+ from langchain_groq import ChatGroq
3
+ from dotenv import load_dotenv
4
+ from langchain.chains import ConversationChain
5
+ from langchain.memory import ConversationBufferWindowMemory
6
+ from langchain_core.prompts.prompt import PromptTemplate
7
+ import streamlit as st
8
+ import os
9
+
10
+ load_dotenv()
11
+
12
+ # setting up groq api key
13
+ os.environ["GROQ_API_KEY"] = st.secrets.groq_api_key
14
+
15
+ # chat set up
16
+ class DataScienceConsultant:
17
+ def __init__(self, temperature=0.5, model_name="llama3-8b-8192"):
18
+ self.chat = ChatGroq(temperature=temperature, model_name=model_name)
19
+ self.template = """You are a Data Science Consultant. You have over 20 years of experience in the field.
20
+ You are currently working with a client to create synthetic data for their product.
21
+ You don't know anything about the product yet, which is why you want to ask the client some questions to understand the data requirements.
22
+ This is the workflow you have been following:
23
+ 1. Converse with the client to understand the data requirements.
24
+ 2. Ask questions about the product the client is working on.
25
+ 3. Ask for possible columns and the data types.
26
+ 4. Ask for the number of rows and the distribution of the data.
27
+ 5. Create a Python script that the client can work with to generate the data.
28
+ 6. Review the generated code with the client requirements.
29
+
30
+ Return the code to the client for review.
31
+
32
+ Current conversation:
33
+ {history}
34
+ Human: {input}
35
+ AI Assistant:"""
36
+ self.prompt = PromptTemplate(input_variables=["history", "input"], template=self.template)
37
+ self.conversation = ConversationChain(
38
+ prompt=self.prompt,
39
+ llm=self.chat,
40
+ verbose=True,
41
+ memory=ConversationBufferWindowMemory(k=10, ai_prefix="AI Assistant"),
42
+ )
43
+
44
+ def predict(self, input_text):
45
+ return self.conversation.predict(input=input_text)
46
+
47
+