Spaces:
Runtime error
Runtime error
Update utils.py
Browse files
utils.py
CHANGED
@@ -1,47 +1,47 @@
|
|
1 |
-
from langchain_core.prompts import ChatPromptTemplate
|
2 |
-
from langchain_groq import ChatGroq
|
3 |
-
from dotenv import load_dotenv
|
4 |
-
from langchain.chains import ConversationChain
|
5 |
-
from langchain.memory import ConversationBufferWindowMemory
|
6 |
-
from langchain_core.prompts.prompt import PromptTemplate
|
7 |
-
import streamlit as st
|
8 |
-
import os
|
9 |
-
|
10 |
-
load_dotenv()
|
11 |
-
|
12 |
-
# setting up groq api key
|
13 |
-
os.environ["GROQ_API_KEY"] = st.secrets.
|
14 |
-
|
15 |
-
# chat set up
|
16 |
-
class DataScienceConsultant:
|
17 |
-
def __init__(self, temperature=0.5, model_name="llama3-8b-8192"):
|
18 |
-
self.chat = ChatGroq(temperature=temperature, model_name=model_name)
|
19 |
-
self.template = """You are a Data Science Consultant. You have over 20 years of experience in the field.
|
20 |
-
You are currently working with a client to create synthetic data for their product.
|
21 |
-
You don't know anything about the product yet, which is why you want to ask the client some questions to understand the data requirements.
|
22 |
-
This is the workflow you have been following:
|
23 |
-
1. Converse with the client to understand the data requirements.
|
24 |
-
2. Ask questions about the product the client is working on.
|
25 |
-
3. Ask for possible columns and the data types.
|
26 |
-
4. Ask for the number of rows and the distribution of the data.
|
27 |
-
5. Create a Python script that the client can work with to generate the data.
|
28 |
-
6. Review the generated code with the client requirements.
|
29 |
-
|
30 |
-
Return the code to the client for review.
|
31 |
-
|
32 |
-
Current conversation:
|
33 |
-
{history}
|
34 |
-
Human: {input}
|
35 |
-
AI Assistant:"""
|
36 |
-
self.prompt = PromptTemplate(input_variables=["history", "input"], template=self.template)
|
37 |
-
self.conversation = ConversationChain(
|
38 |
-
prompt=self.prompt,
|
39 |
-
llm=self.chat,
|
40 |
-
verbose=True,
|
41 |
-
memory=ConversationBufferWindowMemory(k=10, ai_prefix="AI Assistant"),
|
42 |
-
)
|
43 |
-
|
44 |
-
def predict(self, input_text):
|
45 |
-
return self.conversation.predict(input=input_text)
|
46 |
-
|
47 |
-
|
|
|
1 |
+
from langchain_core.prompts import ChatPromptTemplate
|
2 |
+
from langchain_groq import ChatGroq
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from langchain.chains import ConversationChain
|
5 |
+
from langchain.memory import ConversationBufferWindowMemory
|
6 |
+
from langchain_core.prompts.prompt import PromptTemplate
|
7 |
+
import streamlit as st
|
8 |
+
import os
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
# setting up groq api key
|
13 |
+
os.environ["GROQ_API_KEY"] = st.secrets.groq_api_key
|
14 |
+
|
15 |
+
# chat set up
|
16 |
+
class DataScienceConsultant:
|
17 |
+
def __init__(self, temperature=0.5, model_name="llama3-8b-8192"):
|
18 |
+
self.chat = ChatGroq(temperature=temperature, model_name=model_name)
|
19 |
+
self.template = """You are a Data Science Consultant. You have over 20 years of experience in the field.
|
20 |
+
You are currently working with a client to create synthetic data for their product.
|
21 |
+
You don't know anything about the product yet, which is why you want to ask the client some questions to understand the data requirements.
|
22 |
+
This is the workflow you have been following:
|
23 |
+
1. Converse with the client to understand the data requirements.
|
24 |
+
2. Ask questions about the product the client is working on.
|
25 |
+
3. Ask for possible columns and the data types.
|
26 |
+
4. Ask for the number of rows and the distribution of the data.
|
27 |
+
5. Create a Python script that the client can work with to generate the data.
|
28 |
+
6. Review the generated code with the client requirements.
|
29 |
+
|
30 |
+
Return the code to the client for review.
|
31 |
+
|
32 |
+
Current conversation:
|
33 |
+
{history}
|
34 |
+
Human: {input}
|
35 |
+
AI Assistant:"""
|
36 |
+
self.prompt = PromptTemplate(input_variables=["history", "input"], template=self.template)
|
37 |
+
self.conversation = ConversationChain(
|
38 |
+
prompt=self.prompt,
|
39 |
+
llm=self.chat,
|
40 |
+
verbose=True,
|
41 |
+
memory=ConversationBufferWindowMemory(k=10, ai_prefix="AI Assistant"),
|
42 |
+
)
|
43 |
+
|
44 |
+
def predict(self, input_text):
|
45 |
+
return self.conversation.predict(input=input_text)
|
46 |
+
|
47 |
+
|