Spaces:
Sleeping
Sleeping
File size: 1,432 Bytes
aa76da4 937e579 aa76da4 937e579 aa76da4 937e579 aa76da4 8a40fe9 aa76da4 fa1f6e5 aa76da4 fa1f6e5 aa76da4 8a40fe9 fa1f6e5 aa76da4 fa1f6e5 aa76da4 fa1f6e5 aa76da4 fa1f6e5 aa76da4 937e579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
title: SAMH
emoji: ⚡
colorFrom: purple
colorTo: blue
sdk: docker
pinned: true
license: mit
short_description: Sentment Analysis for Mental Health
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
# Sentiment Analysis API

This project provides a sentiment analysis API using FastAPI and a machine learning model trained on textual data.
## Features
- Data ingestion and preprocessing
- Model training and saving
- FastAPI application for serving predictions
- Dockerized for easy deployment
## Setup
### Prerequisites
- Docker installed on your system
### Build and Run
1. Build the Docker image:
```bash
docker build -t sentiment-analysis-api .
```
2. Run the Docker container:
```bash
docker run -p 8000:8000 sentiment-analysis-api
```
3. Access the API:
- Home: [http://localhost:8000](http://localhost:8000)
- Health Check: [http://localhost:8000/health](http://localhost:8000/health)
- Predict Sentiment: Use a POST request to [http://localhost:8000/predict_sentiment](http://localhost:8000/predict_sentiment) with a JSON body.
## Example cURL Command
```bash
curl -X POST "http://localhost:8000/predict_sentiment" -H "Content-Type: application/json" -d '{"text": "I love programming in Python."}' |