Spaces:
Sleeping
Sleeping
Upload 35 files
Browse files- .dockerignore +0 -0
- .gitattributes +2 -0
- .gitignore +2 -0
- Dockerfile +23 -0
- README.md +42 -11
- data/Combined_Data.csv +3 -0
- data/cleaned_data.csv +3 -0
- data_pipeline/__init__.py +0 -0
- data_pipeline/data_ingestion.py +38 -0
- data_pipeline/data_preprocessor.py +89 -0
- db_connection.py +40 -0
- entrypoint.sh +20 -0
- experiment.ipynb +1871 -0
- fastapi_app/__init__.py +0 -0
- fastapi_app/main.py +91 -0
- fastapi_app/static/index.html +41 -0
- fastapi_app/static/script.js +53 -0
- fastapi_app/static/style.css +78 -0
- image.png +0 -0
- llama_pipeline/__pycache__/llama_predict.cpython-310.pyc +0 -0
- llama_pipeline/llama_predict.py +96 -0
- logging_config/__init__.py +0 -0
- logging_config/__pycache__/__init__.cpython-310.pyc +0 -0
- logging_config/__pycache__/logger_config.cpython-310.pyc +0 -0
- logging_config/logger_config.py +39 -0
- logs/app.log +0 -0
- model_pipeline/__init__.py +0 -0
- model_pipeline/__pycache__/__init__.cpython-310.pyc +0 -0
- model_pipeline/__pycache__/model_predict.cpython-310.pyc +0 -0
- model_pipeline/model_predict.py +100 -0
- model_pipeline/model_trainer.py +93 -0
- models/model_v20240717014315.joblib +3 -0
- new_experiement.ipynb +282 -0
- requirements.txt +14 -0
- todo.txt +4 -0
- utils.py +57 -0
.dockerignore
ADDED
File without changes
|
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
data/cleaned_data.csv filter=lfs diff=lfs merge=lfs -text
|
37 |
+
data/Combined_Data.csv filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
samh_venv
|
2 |
+
.env
|
Dockerfile
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime as a parent image
|
2 |
+
FROM python:3.10-slim
|
3 |
+
|
4 |
+
# Set the working directory
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the requirements file into the container
|
8 |
+
COPY requirements.txt /app/requirements.txt
|
9 |
+
|
10 |
+
# Install any needed packages specified in requirements.txt
|
11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
+
|
13 |
+
# Copy the current directory contents into the container at /app
|
14 |
+
COPY . /app
|
15 |
+
|
16 |
+
# Download NLTK data
|
17 |
+
RUN python -c "import nltk; nltk.download('stopwords'); nltk.download('wordnet')"
|
18 |
+
|
19 |
+
# Make port 8000 available to the world outside this container
|
20 |
+
EXPOSE 8000
|
21 |
+
|
22 |
+
# Run the entrypoint script
|
23 |
+
CMD ["sh", "./entrypoint.sh"]
|
README.md
CHANGED
@@ -1,11 +1,42 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Sentiment Analysis API
|
2 |
+

|
3 |
+
|
4 |
+
This project provides a sentiment analysis API using FastAPI and a machine learning model trained on textual data.
|
5 |
+
|
6 |
+
## Features
|
7 |
+
|
8 |
+
- Data ingestion and preprocessing
|
9 |
+
- Model training and saving
|
10 |
+
- FastAPI application for serving predictions
|
11 |
+
- Dockerized for easy deployment
|
12 |
+
|
13 |
+
## Setup
|
14 |
+
|
15 |
+
### Prerequisites
|
16 |
+
|
17 |
+
- Docker installed on your system
|
18 |
+
|
19 |
+
### Build and Run
|
20 |
+
|
21 |
+
1. Build the Docker image:
|
22 |
+
|
23 |
+
```bash
|
24 |
+
docker build -t sentiment-analysis-api .
|
25 |
+
```
|
26 |
+
|
27 |
+
2. Run the Docker container:
|
28 |
+
|
29 |
+
```bash
|
30 |
+
docker run -p 8000:8000 sentiment-analysis-api
|
31 |
+
```
|
32 |
+
|
33 |
+
3. Access the API:
|
34 |
+
|
35 |
+
- Home: [http://localhost:8000](http://localhost:8000)
|
36 |
+
- Health Check: [http://localhost:8000/health](http://localhost:8000/health)
|
37 |
+
- Predict Sentiment: Use a POST request to [http://localhost:8000/predict_sentiment](http://localhost:8000/predict_sentiment) with a JSON body.
|
38 |
+
|
39 |
+
## Example cURL Command
|
40 |
+
|
41 |
+
```bash
|
42 |
+
curl -X POST "http://localhost:8000/predict_sentiment" -H "Content-Type: application/json" -d '{"text": "I love programming in Python."}'
|
data/Combined_Data.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0700996d814af3ec77ef31870b68c6cdf991217eb76e259c7196df7f2e0e27ba
|
3 |
+
size 31469552
|
data/cleaned_data.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8b9a23caf50bd71eb2e02f6b49447f247791e66b0936f0cb47e479736b0c17e
|
3 |
+
size 49456310
|
data_pipeline/__init__.py
ADDED
File without changes
|
data_pipeline/data_ingestion.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import requests
|
4 |
+
|
5 |
+
# Add the root directory to sys.path
|
6 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
7 |
+
|
8 |
+
from logging_config.logger_config import get_logger
|
9 |
+
|
10 |
+
# Get the logger
|
11 |
+
logger = get_logger(__name__)
|
12 |
+
|
13 |
+
def download_data(url, save_path):
|
14 |
+
# Ensure the save directory exists
|
15 |
+
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
16 |
+
|
17 |
+
# Send a GET request to the URL
|
18 |
+
logger.info(f"Sending GET request to {url}")
|
19 |
+
response = requests.get(url)
|
20 |
+
|
21 |
+
# Check if the request was successful
|
22 |
+
if response.status_code == 200:
|
23 |
+
# Write the content to the specified file
|
24 |
+
with open(save_path, 'wb') as file:
|
25 |
+
file.write(response.content)
|
26 |
+
logger.info(f"Data downloaded successfully and saved to {save_path}")
|
27 |
+
else:
|
28 |
+
logger.error(f"Failed to download data. Status code: {response.status_code}")
|
29 |
+
|
30 |
+
if __name__ == "__main__":
|
31 |
+
# URL of the dataset
|
32 |
+
dataset_url = "https://raw.githubusercontent.com/timothyafolami/SAMH-Sentiment-Analysis-For-Mental-Health/master/data/Combined_Data.csv"
|
33 |
+
|
34 |
+
# Path to save the dataset
|
35 |
+
save_file_path = os.path.join("./data", "Combined_Data.csv")
|
36 |
+
|
37 |
+
# Download the dataset
|
38 |
+
download_data(dataset_url, save_file_path)
|
data_pipeline/data_preprocessor.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import re
|
4 |
+
import string
|
5 |
+
import pandas as pd
|
6 |
+
import nltk
|
7 |
+
from nltk.corpus import stopwords
|
8 |
+
from nltk.stem import WordNetLemmatizer
|
9 |
+
|
10 |
+
# Add the root directory to sys.path
|
11 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
12 |
+
|
13 |
+
from logging_config.logger_config import get_logger
|
14 |
+
|
15 |
+
|
16 |
+
# Download necessary NLTK data files
|
17 |
+
nltk.download('stopwords')
|
18 |
+
nltk.download('wordnet')
|
19 |
+
|
20 |
+
# Get the logger
|
21 |
+
logger = get_logger(__name__)
|
22 |
+
|
23 |
+
# Custom Preprocessor Class
|
24 |
+
class TextPreprocessor:
|
25 |
+
def __init__(self):
|
26 |
+
self.stop_words = set(stopwords.words('english'))
|
27 |
+
self.lemmatizer = WordNetLemmatizer()
|
28 |
+
logger.info("TextPreprocessor initialized.")
|
29 |
+
|
30 |
+
def preprocess_text(self, text):
|
31 |
+
# logger.info(f"Original text: {text}")
|
32 |
+
# Lowercase the text
|
33 |
+
text = text.lower()
|
34 |
+
# logger.info(f"Lowercased text: {text}")
|
35 |
+
|
36 |
+
# Remove punctuation
|
37 |
+
text = re.sub(f'[{re.escape(string.punctuation)}]', '', text)
|
38 |
+
# logger.info(f"Text after punctuation removal: {text}")
|
39 |
+
|
40 |
+
# Remove numbers
|
41 |
+
text = re.sub(r'\d+', '', text)
|
42 |
+
# logger.info(f"Text after number removal: {text}")
|
43 |
+
|
44 |
+
# Tokenize the text
|
45 |
+
words = text.split()
|
46 |
+
# logger.info(f"Tokenized text: {words}")
|
47 |
+
|
48 |
+
# Remove stopwords and apply lemmatization
|
49 |
+
words = [self.lemmatizer.lemmatize(word) for word in words if word not in self.stop_words]
|
50 |
+
# logger.info(f"Text after stopword removal and lemmatization: {words}")
|
51 |
+
|
52 |
+
# Join words back into a single string
|
53 |
+
cleaned_text = ' '.join(words)
|
54 |
+
# logger.info(f"Cleaned text: {cleaned_text}")
|
55 |
+
|
56 |
+
return cleaned_text
|
57 |
+
|
58 |
+
def load_and_preprocess_data(file_path):
|
59 |
+
# Load the data
|
60 |
+
logger.info(f"Loading data from {file_path}")
|
61 |
+
df = pd.read_csv(file_path)
|
62 |
+
# dropping missing values
|
63 |
+
logger.info("Dropping missing values")
|
64 |
+
df.dropna(inplace=True)
|
65 |
+
|
66 |
+
# Check if the necessary column exists
|
67 |
+
if 'statement' not in df.columns:
|
68 |
+
logger.error("The required column 'statement' is missing from the dataset.")
|
69 |
+
return
|
70 |
+
|
71 |
+
# Initialize the text preprocessor
|
72 |
+
preprocessor = TextPreprocessor()
|
73 |
+
|
74 |
+
# Apply the preprocessing to the 'statement' column
|
75 |
+
logger.info("Starting text preprocessing...")
|
76 |
+
df['cleaned_statement'] = df['statement'].apply(preprocessor.preprocess_text)
|
77 |
+
logger.info("Text preprocessing completed.")
|
78 |
+
|
79 |
+
# Save the cleaned data to a new CSV file
|
80 |
+
cleaned_file_path = os.path.join('./data', 'cleaned_data.csv')
|
81 |
+
df.to_csv(cleaned_file_path, index=False)
|
82 |
+
logger.info(f"Cleaned data saved to {cleaned_file_path}")
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
# Path to the downloaded dataset
|
86 |
+
dataset_path = os.path.join("./data", "Combined_Data.csv")
|
87 |
+
|
88 |
+
# Preprocess the data
|
89 |
+
load_and_preprocess_data(dataset_path)
|
db_connection.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys
|
2 |
+
from supabase import create_client, Client
|
3 |
+
|
4 |
+
# Add the root directory to sys.path
|
5 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
6 |
+
from logging_config.logger_config import get_logger
|
7 |
+
|
8 |
+
# Get the logger
|
9 |
+
logger = get_logger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
#connecting to the database
|
13 |
+
url: str = os.environ.get("SUPABASE_PROJECT_URL")
|
14 |
+
key: str = os.environ.get("SUPABASE_API_KEY")
|
15 |
+
supabase: Client = create_client(url, key)
|
16 |
+
|
17 |
+
# creating a function to update the database
|
18 |
+
def insert_db(data: dict, table='Interaction History'):
|
19 |
+
try:
|
20 |
+
logger.info(f"Inserting data into the database: {data}")
|
21 |
+
response = supabase.table(table).insert(data).execute()
|
22 |
+
logger.info(f"Data inserted successfully: {response}")
|
23 |
+
return response
|
24 |
+
except Exception as e:
|
25 |
+
logger.error(f"Error inserting data into the database: {e}")
|
26 |
+
return None
|
27 |
+
|
28 |
+
if __name__ == "__main__":
|
29 |
+
# Test the insert_db function
|
30 |
+
data = {
|
31 |
+
"Input_text" : "I feel incredibly anxious about everything and can't stop worrying",
|
32 |
+
"Model_prediction" : "Anxiety",
|
33 |
+
"Llama_3_Prediction" : "Anxiety",
|
34 |
+
"Llama_3_Explanation" : "After my analysis, i concluded that the user is suffering from anxiety",
|
35 |
+
"User Rating" : 5,
|
36 |
+
}
|
37 |
+
|
38 |
+
response = insert_db(data)
|
39 |
+
print(response)
|
40 |
+
|
entrypoint.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
|
3 |
+
# Exit immediately if a command exits with a non-zero status
|
4 |
+
set -e
|
5 |
+
|
6 |
+
# Step 1: Data Ingestion
|
7 |
+
echo "Running data ingestion..."
|
8 |
+
python data_pipeline/data_ingestion.py
|
9 |
+
|
10 |
+
# Step 2: Data Preprocessing
|
11 |
+
echo "Running data preprocessing..."
|
12 |
+
python data_pipeline/data_preprocessor.py
|
13 |
+
|
14 |
+
# Step 3: Model Training
|
15 |
+
echo "Running model training..."
|
16 |
+
python model_pipeline/model_trainer.py
|
17 |
+
|
18 |
+
# Step 4: Run FastAPI App
|
19 |
+
echo "Starting FastAPI app..."
|
20 |
+
uvicorn fastapi_app.main:app --host 0.0.0.0 --port 8000
|
experiment.ipynb
ADDED
@@ -0,0 +1,1871 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 13,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd\n",
|
10 |
+
"import numpy as np"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 16,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"# data loading\n",
|
20 |
+
"data = pd.read_csv('data//Combined_Data.csv')"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 17,
|
26 |
+
"metadata": {},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"data": {
|
30 |
+
"text/html": [
|
31 |
+
"<div>\n",
|
32 |
+
"<style scoped>\n",
|
33 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
34 |
+
" vertical-align: middle;\n",
|
35 |
+
" }\n",
|
36 |
+
"\n",
|
37 |
+
" .dataframe tbody tr th {\n",
|
38 |
+
" vertical-align: top;\n",
|
39 |
+
" }\n",
|
40 |
+
"\n",
|
41 |
+
" .dataframe thead th {\n",
|
42 |
+
" text-align: right;\n",
|
43 |
+
" }\n",
|
44 |
+
"</style>\n",
|
45 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
46 |
+
" <thead>\n",
|
47 |
+
" <tr style=\"text-align: right;\">\n",
|
48 |
+
" <th></th>\n",
|
49 |
+
" <th>Unnamed: 0</th>\n",
|
50 |
+
" <th>statement</th>\n",
|
51 |
+
" <th>status</th>\n",
|
52 |
+
" </tr>\n",
|
53 |
+
" </thead>\n",
|
54 |
+
" <tbody>\n",
|
55 |
+
" <tr>\n",
|
56 |
+
" <th>0</th>\n",
|
57 |
+
" <td>0</td>\n",
|
58 |
+
" <td>oh my gosh</td>\n",
|
59 |
+
" <td>Anxiety</td>\n",
|
60 |
+
" </tr>\n",
|
61 |
+
" <tr>\n",
|
62 |
+
" <th>1</th>\n",
|
63 |
+
" <td>1</td>\n",
|
64 |
+
" <td>trouble sleeping, confused mind, restless hear...</td>\n",
|
65 |
+
" <td>Anxiety</td>\n",
|
66 |
+
" </tr>\n",
|
67 |
+
" <tr>\n",
|
68 |
+
" <th>2</th>\n",
|
69 |
+
" <td>2</td>\n",
|
70 |
+
" <td>All wrong, back off dear, forward doubt. Stay ...</td>\n",
|
71 |
+
" <td>Anxiety</td>\n",
|
72 |
+
" </tr>\n",
|
73 |
+
" <tr>\n",
|
74 |
+
" <th>3</th>\n",
|
75 |
+
" <td>3</td>\n",
|
76 |
+
" <td>I've shifted my focus to something else but I'...</td>\n",
|
77 |
+
" <td>Anxiety</td>\n",
|
78 |
+
" </tr>\n",
|
79 |
+
" <tr>\n",
|
80 |
+
" <th>4</th>\n",
|
81 |
+
" <td>4</td>\n",
|
82 |
+
" <td>I'm restless and restless, it's been a month n...</td>\n",
|
83 |
+
" <td>Anxiety</td>\n",
|
84 |
+
" </tr>\n",
|
85 |
+
" </tbody>\n",
|
86 |
+
"</table>\n",
|
87 |
+
"</div>"
|
88 |
+
],
|
89 |
+
"text/plain": [
|
90 |
+
" Unnamed: 0 statement status\n",
|
91 |
+
"0 0 oh my gosh Anxiety\n",
|
92 |
+
"1 1 trouble sleeping, confused mind, restless hear... Anxiety\n",
|
93 |
+
"2 2 All wrong, back off dear, forward doubt. Stay ... Anxiety\n",
|
94 |
+
"3 3 I've shifted my focus to something else but I'... Anxiety\n",
|
95 |
+
"4 4 I'm restless and restless, it's been a month n... Anxiety"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
"execution_count": 17,
|
99 |
+
"metadata": {},
|
100 |
+
"output_type": "execute_result"
|
101 |
+
}
|
102 |
+
],
|
103 |
+
"source": [
|
104 |
+
"data.head()"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"execution_count": 21,
|
110 |
+
"metadata": {},
|
111 |
+
"outputs": [
|
112 |
+
{
|
113 |
+
"data": {
|
114 |
+
"text/plain": [
|
115 |
+
"'I recently watched my dad die a gruesome death due to cancer this week, and I am sure something similar is in my future, I do not have any real friends and I do not have a home, I have been living in a hotel the past 6 months. I do not want to live anymore I just want to see my dad again and I do not want to suffer like he did I do not want to live anymore'"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
"execution_count": 21,
|
119 |
+
"metadata": {},
|
120 |
+
"output_type": "execute_result"
|
121 |
+
}
|
122 |
+
],
|
123 |
+
"source": [
|
124 |
+
"data['statement'].values[19230]"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": 19,
|
130 |
+
"metadata": {},
|
131 |
+
"outputs": [
|
132 |
+
{
|
133 |
+
"data": {
|
134 |
+
"text/html": [
|
135 |
+
"<div>\n",
|
136 |
+
"<style scoped>\n",
|
137 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
138 |
+
" vertical-align: middle;\n",
|
139 |
+
" }\n",
|
140 |
+
"\n",
|
141 |
+
" .dataframe tbody tr th {\n",
|
142 |
+
" vertical-align: top;\n",
|
143 |
+
" }\n",
|
144 |
+
"\n",
|
145 |
+
" .dataframe thead th {\n",
|
146 |
+
" text-align: right;\n",
|
147 |
+
" }\n",
|
148 |
+
"</style>\n",
|
149 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
150 |
+
" <thead>\n",
|
151 |
+
" <tr style=\"text-align: right;\">\n",
|
152 |
+
" <th></th>\n",
|
153 |
+
" <th>statement</th>\n",
|
154 |
+
" <th>status</th>\n",
|
155 |
+
" </tr>\n",
|
156 |
+
" </thead>\n",
|
157 |
+
" <tbody>\n",
|
158 |
+
" <tr>\n",
|
159 |
+
" <th>0</th>\n",
|
160 |
+
" <td>oh my gosh</td>\n",
|
161 |
+
" <td>Anxiety</td>\n",
|
162 |
+
" </tr>\n",
|
163 |
+
" <tr>\n",
|
164 |
+
" <th>1</th>\n",
|
165 |
+
" <td>trouble sleeping, confused mind, restless hear...</td>\n",
|
166 |
+
" <td>Anxiety</td>\n",
|
167 |
+
" </tr>\n",
|
168 |
+
" <tr>\n",
|
169 |
+
" <th>2</th>\n",
|
170 |
+
" <td>All wrong, back off dear, forward doubt. Stay ...</td>\n",
|
171 |
+
" <td>Anxiety</td>\n",
|
172 |
+
" </tr>\n",
|
173 |
+
" <tr>\n",
|
174 |
+
" <th>3</th>\n",
|
175 |
+
" <td>I've shifted my focus to something else but I'...</td>\n",
|
176 |
+
" <td>Anxiety</td>\n",
|
177 |
+
" </tr>\n",
|
178 |
+
" <tr>\n",
|
179 |
+
" <th>4</th>\n",
|
180 |
+
" <td>I'm restless and restless, it's been a month n...</td>\n",
|
181 |
+
" <td>Anxiety</td>\n",
|
182 |
+
" </tr>\n",
|
183 |
+
" </tbody>\n",
|
184 |
+
"</table>\n",
|
185 |
+
"</div>"
|
186 |
+
],
|
187 |
+
"text/plain": [
|
188 |
+
" statement status\n",
|
189 |
+
"0 oh my gosh Anxiety\n",
|
190 |
+
"1 trouble sleeping, confused mind, restless hear... Anxiety\n",
|
191 |
+
"2 All wrong, back off dear, forward doubt. Stay ... Anxiety\n",
|
192 |
+
"3 I've shifted my focus to something else but I'... Anxiety\n",
|
193 |
+
"4 I'm restless and restless, it's been a month n... Anxiety"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
"execution_count": 19,
|
197 |
+
"metadata": {},
|
198 |
+
"output_type": "execute_result"
|
199 |
+
}
|
200 |
+
],
|
201 |
+
"source": [
|
202 |
+
"# selecting needed columns\n",
|
203 |
+
"df = data[['statement', 'status']]\n",
|
204 |
+
"df.head()"
|
205 |
+
]
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"cell_type": "code",
|
209 |
+
"execution_count": 5,
|
210 |
+
"metadata": {},
|
211 |
+
"outputs": [
|
212 |
+
{
|
213 |
+
"data": {
|
214 |
+
"text/plain": [
|
215 |
+
"status\n",
|
216 |
+
"Normal 16351\n",
|
217 |
+
"Depression 15404\n",
|
218 |
+
"Suicidal 10653\n",
|
219 |
+
"Anxiety 3888\n",
|
220 |
+
"Bipolar 2877\n",
|
221 |
+
"Stress 2669\n",
|
222 |
+
"Personality disorder 1201\n",
|
223 |
+
"Name: count, dtype: int64"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
"execution_count": 5,
|
227 |
+
"metadata": {},
|
228 |
+
"output_type": "execute_result"
|
229 |
+
}
|
230 |
+
],
|
231 |
+
"source": [
|
232 |
+
"# value counts for the status\n",
|
233 |
+
"df['status'].value_counts()"
|
234 |
+
]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "code",
|
238 |
+
"execution_count": 6,
|
239 |
+
"metadata": {},
|
240 |
+
"outputs": [
|
241 |
+
{
|
242 |
+
"data": {
|
243 |
+
"text/plain": [
|
244 |
+
"(53043, 2)"
|
245 |
+
]
|
246 |
+
},
|
247 |
+
"execution_count": 6,
|
248 |
+
"metadata": {},
|
249 |
+
"output_type": "execute_result"
|
250 |
+
}
|
251 |
+
],
|
252 |
+
"source": [
|
253 |
+
"df.shape"
|
254 |
+
]
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"cell_type": "code",
|
258 |
+
"execution_count": 7,
|
259 |
+
"metadata": {},
|
260 |
+
"outputs": [
|
261 |
+
{
|
262 |
+
"data": {
|
263 |
+
"text/plain": [
|
264 |
+
"statement 362\n",
|
265 |
+
"status 0\n",
|
266 |
+
"dtype: int64"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
"execution_count": 7,
|
270 |
+
"metadata": {},
|
271 |
+
"output_type": "execute_result"
|
272 |
+
}
|
273 |
+
],
|
274 |
+
"source": [
|
275 |
+
"# checking for nan values\n",
|
276 |
+
"df.isnull().sum()"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "code",
|
281 |
+
"execution_count": 8,
|
282 |
+
"metadata": {},
|
283 |
+
"outputs": [
|
284 |
+
{
|
285 |
+
"data": {
|
286 |
+
"text/plain": [
|
287 |
+
"statement 0\n",
|
288 |
+
"status 0\n",
|
289 |
+
"dtype: int64"
|
290 |
+
]
|
291 |
+
},
|
292 |
+
"execution_count": 8,
|
293 |
+
"metadata": {},
|
294 |
+
"output_type": "execute_result"
|
295 |
+
}
|
296 |
+
],
|
297 |
+
"source": [
|
298 |
+
"# dropping nan values\n",
|
299 |
+
"df_1 = df.dropna()\n",
|
300 |
+
"df_1.isna().sum()"
|
301 |
+
]
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"cell_type": "code",
|
305 |
+
"execution_count": 9,
|
306 |
+
"metadata": {},
|
307 |
+
"outputs": [
|
308 |
+
{
|
309 |
+
"name": "stderr",
|
310 |
+
"output_type": "stream",
|
311 |
+
"text": [
|
312 |
+
"[nltk_data] Downloading package stopwords to\n",
|
313 |
+
"[nltk_data] C:\\Users\\timmy\\AppData\\Roaming\\nltk_data...\n",
|
314 |
+
"[nltk_data] Package stopwords is already up-to-date!\n",
|
315 |
+
"[nltk_data] Downloading package wordnet to\n",
|
316 |
+
"[nltk_data] C:\\Users\\timmy\\AppData\\Roaming\\nltk_data...\n",
|
317 |
+
"[nltk_data] Package wordnet is already up-to-date!\n"
|
318 |
+
]
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"data": {
|
322 |
+
"text/plain": [
|
323 |
+
"True"
|
324 |
+
]
|
325 |
+
},
|
326 |
+
"execution_count": 9,
|
327 |
+
"metadata": {},
|
328 |
+
"output_type": "execute_result"
|
329 |
+
}
|
330 |
+
],
|
331 |
+
"source": [
|
332 |
+
"import re\n",
|
333 |
+
"import string\n",
|
334 |
+
"import nltk\n",
|
335 |
+
"from nltk.corpus import stopwords\n",
|
336 |
+
"from nltk.stem import PorterStemmer, WordNetLemmatizer\n",
|
337 |
+
"\n",
|
338 |
+
"# Download necessary NLTK data files\n",
|
339 |
+
"nltk.download('stopwords')\n",
|
340 |
+
"nltk.download('wordnet')"
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"cell_type": "code",
|
345 |
+
"execution_count": 10,
|
346 |
+
"metadata": {},
|
347 |
+
"outputs": [
|
348 |
+
{
|
349 |
+
"name": "stdout",
|
350 |
+
"output_type": "stream",
|
351 |
+
"text": [
|
352 |
+
"example sentence demonstrate text preprocessing python includes number like punctuation\n"
|
353 |
+
]
|
354 |
+
}
|
355 |
+
],
|
356 |
+
"source": [
|
357 |
+
"# creating a cleaning pipeline for the statement column\n",
|
358 |
+
"def preprocess_text(text, use_stemming=False, use_lemmatization=True):\n",
|
359 |
+
" # Lowercase the text\n",
|
360 |
+
" text = text.lower()\n",
|
361 |
+
" \n",
|
362 |
+
" # Remove punctuation\n",
|
363 |
+
" text = re.sub(f'[{re.escape(string.punctuation)}]', '', text)\n",
|
364 |
+
" \n",
|
365 |
+
" # Remove numbers\n",
|
366 |
+
" text = re.sub(r'\\d+', '', text)\n",
|
367 |
+
" \n",
|
368 |
+
" # Tokenize the text\n",
|
369 |
+
" words = text.split()\n",
|
370 |
+
" \n",
|
371 |
+
" # Remove stopwords\n",
|
372 |
+
" stop_words = set(stopwords.words('english'))\n",
|
373 |
+
" words = [word for word in words if word not in stop_words]\n",
|
374 |
+
" \n",
|
375 |
+
" # Initialize stemmer and lemmatizer\n",
|
376 |
+
" stemmer = PorterStemmer()\n",
|
377 |
+
" lemmatizer = WordNetLemmatizer()\n",
|
378 |
+
" \n",
|
379 |
+
" if use_stemming:\n",
|
380 |
+
" # Apply stemming\n",
|
381 |
+
" words = [stemmer.stem(word) for word in words]\n",
|
382 |
+
" elif use_lemmatization:\n",
|
383 |
+
" # Apply lemmatization\n",
|
384 |
+
" words = [lemmatizer.lemmatize(word) for word in words]\n",
|
385 |
+
" \n",
|
386 |
+
" # Join words back into a single string\n",
|
387 |
+
" cleaned_text = ' '.join(words)\n",
|
388 |
+
" \n",
|
389 |
+
" return cleaned_text\n",
|
390 |
+
"\n",
|
391 |
+
"# Example usage\n",
|
392 |
+
"text = \"This is an example sentence to demonstrate text preprocessing in Python. It includes numbers like 123 and punctuation!\"\n",
|
393 |
+
"cleaned_text = preprocess_text(text)\n",
|
394 |
+
"print(cleaned_text)\n"
|
395 |
+
]
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"cell_type": "code",
|
399 |
+
"execution_count": 11,
|
400 |
+
"metadata": {},
|
401 |
+
"outputs": [
|
402 |
+
{
|
403 |
+
"name": "stderr",
|
404 |
+
"output_type": "stream",
|
405 |
+
"text": [
|
406 |
+
"C:\\Users\\timmy\\AppData\\Local\\Temp\\ipykernel_4184\\637849828.py:2: SettingWithCopyWarning: \n",
|
407 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
408 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
409 |
+
"\n",
|
410 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
411 |
+
" df_1['cleaned_statement'] = df_1['statement'].apply(preprocess_text)\n"
|
412 |
+
]
|
413 |
+
}
|
414 |
+
],
|
415 |
+
"source": [
|
416 |
+
"# implementing on the statement column\n",
|
417 |
+
"df_1['cleaned_statement'] = df_1['statement'].apply(preprocess_text)"
|
418 |
+
]
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"cell_type": "code",
|
422 |
+
"execution_count": 12,
|
423 |
+
"metadata": {},
|
424 |
+
"outputs": [
|
425 |
+
{
|
426 |
+
"data": {
|
427 |
+
"text/html": [
|
428 |
+
"<div>\n",
|
429 |
+
"<style scoped>\n",
|
430 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
431 |
+
" vertical-align: middle;\n",
|
432 |
+
" }\n",
|
433 |
+
"\n",
|
434 |
+
" .dataframe tbody tr th {\n",
|
435 |
+
" vertical-align: top;\n",
|
436 |
+
" }\n",
|
437 |
+
"\n",
|
438 |
+
" .dataframe thead th {\n",
|
439 |
+
" text-align: right;\n",
|
440 |
+
" }\n",
|
441 |
+
"</style>\n",
|
442 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
443 |
+
" <thead>\n",
|
444 |
+
" <tr style=\"text-align: right;\">\n",
|
445 |
+
" <th></th>\n",
|
446 |
+
" <th>statement</th>\n",
|
447 |
+
" <th>status</th>\n",
|
448 |
+
" <th>cleaned_statement</th>\n",
|
449 |
+
" </tr>\n",
|
450 |
+
" </thead>\n",
|
451 |
+
" <tbody>\n",
|
452 |
+
" <tr>\n",
|
453 |
+
" <th>0</th>\n",
|
454 |
+
" <td>oh my gosh</td>\n",
|
455 |
+
" <td>Anxiety</td>\n",
|
456 |
+
" <td>oh gosh</td>\n",
|
457 |
+
" </tr>\n",
|
458 |
+
" <tr>\n",
|
459 |
+
" <th>1</th>\n",
|
460 |
+
" <td>trouble sleeping, confused mind, restless hear...</td>\n",
|
461 |
+
" <td>Anxiety</td>\n",
|
462 |
+
" <td>trouble sleeping confused mind restless heart ...</td>\n",
|
463 |
+
" </tr>\n",
|
464 |
+
" <tr>\n",
|
465 |
+
" <th>2</th>\n",
|
466 |
+
" <td>All wrong, back off dear, forward doubt. Stay ...</td>\n",
|
467 |
+
" <td>Anxiety</td>\n",
|
468 |
+
" <td>wrong back dear forward doubt stay restless re...</td>\n",
|
469 |
+
" </tr>\n",
|
470 |
+
" <tr>\n",
|
471 |
+
" <th>3</th>\n",
|
472 |
+
" <td>I've shifted my focus to something else but I'...</td>\n",
|
473 |
+
" <td>Anxiety</td>\n",
|
474 |
+
" <td>ive shifted focus something else im still worried</td>\n",
|
475 |
+
" </tr>\n",
|
476 |
+
" <tr>\n",
|
477 |
+
" <th>4</th>\n",
|
478 |
+
" <td>I'm restless and restless, it's been a month n...</td>\n",
|
479 |
+
" <td>Anxiety</td>\n",
|
480 |
+
" <td>im restless restless month boy mean</td>\n",
|
481 |
+
" </tr>\n",
|
482 |
+
" </tbody>\n",
|
483 |
+
"</table>\n",
|
484 |
+
"</div>"
|
485 |
+
],
|
486 |
+
"text/plain": [
|
487 |
+
" statement status \\\n",
|
488 |
+
"0 oh my gosh Anxiety \n",
|
489 |
+
"1 trouble sleeping, confused mind, restless hear... Anxiety \n",
|
490 |
+
"2 All wrong, back off dear, forward doubt. Stay ... Anxiety \n",
|
491 |
+
"3 I've shifted my focus to something else but I'... Anxiety \n",
|
492 |
+
"4 I'm restless and restless, it's been a month n... Anxiety \n",
|
493 |
+
"\n",
|
494 |
+
" cleaned_statement \n",
|
495 |
+
"0 oh gosh \n",
|
496 |
+
"1 trouble sleeping confused mind restless heart ... \n",
|
497 |
+
"2 wrong back dear forward doubt stay restless re... \n",
|
498 |
+
"3 ive shifted focus something else im still worried \n",
|
499 |
+
"4 im restless restless month boy mean "
|
500 |
+
]
|
501 |
+
},
|
502 |
+
"execution_count": 12,
|
503 |
+
"metadata": {},
|
504 |
+
"output_type": "execute_result"
|
505 |
+
}
|
506 |
+
],
|
507 |
+
"source": [
|
508 |
+
"df_1.head()"
|
509 |
+
]
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"cell_type": "code",
|
513 |
+
"execution_count": 13,
|
514 |
+
"metadata": {},
|
515 |
+
"outputs": [
|
516 |
+
{
|
517 |
+
"data": {
|
518 |
+
"text/html": [
|
519 |
+
"<div>\n",
|
520 |
+
"<style scoped>\n",
|
521 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
522 |
+
" vertical-align: middle;\n",
|
523 |
+
" }\n",
|
524 |
+
"\n",
|
525 |
+
" .dataframe tbody tr th {\n",
|
526 |
+
" vertical-align: top;\n",
|
527 |
+
" }\n",
|
528 |
+
"\n",
|
529 |
+
" .dataframe thead th {\n",
|
530 |
+
" text-align: right;\n",
|
531 |
+
" }\n",
|
532 |
+
"</style>\n",
|
533 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
534 |
+
" <thead>\n",
|
535 |
+
" <tr style=\"text-align: right;\">\n",
|
536 |
+
" <th></th>\n",
|
537 |
+
" <th>cleaned_statement</th>\n",
|
538 |
+
" <th>status</th>\n",
|
539 |
+
" </tr>\n",
|
540 |
+
" </thead>\n",
|
541 |
+
" <tbody>\n",
|
542 |
+
" <tr>\n",
|
543 |
+
" <th>0</th>\n",
|
544 |
+
" <td>oh gosh</td>\n",
|
545 |
+
" <td>Anxiety</td>\n",
|
546 |
+
" </tr>\n",
|
547 |
+
" <tr>\n",
|
548 |
+
" <th>1</th>\n",
|
549 |
+
" <td>trouble sleeping confused mind restless heart ...</td>\n",
|
550 |
+
" <td>Anxiety</td>\n",
|
551 |
+
" </tr>\n",
|
552 |
+
" <tr>\n",
|
553 |
+
" <th>2</th>\n",
|
554 |
+
" <td>wrong back dear forward doubt stay restless re...</td>\n",
|
555 |
+
" <td>Anxiety</td>\n",
|
556 |
+
" </tr>\n",
|
557 |
+
" <tr>\n",
|
558 |
+
" <th>3</th>\n",
|
559 |
+
" <td>ive shifted focus something else im still worried</td>\n",
|
560 |
+
" <td>Anxiety</td>\n",
|
561 |
+
" </tr>\n",
|
562 |
+
" <tr>\n",
|
563 |
+
" <th>4</th>\n",
|
564 |
+
" <td>im restless restless month boy mean</td>\n",
|
565 |
+
" <td>Anxiety</td>\n",
|
566 |
+
" </tr>\n",
|
567 |
+
" </tbody>\n",
|
568 |
+
"</table>\n",
|
569 |
+
"</div>"
|
570 |
+
],
|
571 |
+
"text/plain": [
|
572 |
+
" cleaned_statement status\n",
|
573 |
+
"0 oh gosh Anxiety\n",
|
574 |
+
"1 trouble sleeping confused mind restless heart ... Anxiety\n",
|
575 |
+
"2 wrong back dear forward doubt stay restless re... Anxiety\n",
|
576 |
+
"3 ive shifted focus something else im still worried Anxiety\n",
|
577 |
+
"4 im restless restless month boy mean Anxiety"
|
578 |
+
]
|
579 |
+
},
|
580 |
+
"execution_count": 13,
|
581 |
+
"metadata": {},
|
582 |
+
"output_type": "execute_result"
|
583 |
+
}
|
584 |
+
],
|
585 |
+
"source": [
|
586 |
+
"df_2 = df_1[['cleaned_statement', 'status']]\n",
|
587 |
+
"df_2.head()"
|
588 |
+
]
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"cell_type": "code",
|
592 |
+
"execution_count": 14,
|
593 |
+
"metadata": {},
|
594 |
+
"outputs": [
|
595 |
+
{
|
596 |
+
"name": "stderr",
|
597 |
+
"output_type": "stream",
|
598 |
+
"text": [
|
599 |
+
"C:\\Users\\timmy\\AppData\\Local\\Temp\\ipykernel_4184\\858368390.py:4: SettingWithCopyWarning: \n",
|
600 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
601 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
602 |
+
"\n",
|
603 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
604 |
+
" df_2['status'] = encoder.fit_transform(df_2['status'])\n"
|
605 |
+
]
|
606 |
+
}
|
607 |
+
],
|
608 |
+
"source": [
|
609 |
+
"# encoding the status column\n",
|
610 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
611 |
+
"encoder = LabelEncoder()\n",
|
612 |
+
"df_2['status'] = encoder.fit_transform(df_2['status'])"
|
613 |
+
]
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"cell_type": "code",
|
617 |
+
"execution_count": 15,
|
618 |
+
"metadata": {},
|
619 |
+
"outputs": [
|
620 |
+
{
|
621 |
+
"data": {
|
622 |
+
"text/plain": [
|
623 |
+
"array(['Anxiety', 'Bipolar', 'Depression', 'Normal',\n",
|
624 |
+
" 'Personality disorder', 'Stress', 'Suicidal'], dtype=object)"
|
625 |
+
]
|
626 |
+
},
|
627 |
+
"execution_count": 15,
|
628 |
+
"metadata": {},
|
629 |
+
"output_type": "execute_result"
|
630 |
+
}
|
631 |
+
],
|
632 |
+
"source": [
|
633 |
+
"encoder.classes_"
|
634 |
+
]
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"cell_type": "code",
|
638 |
+
"execution_count": 16,
|
639 |
+
"metadata": {},
|
640 |
+
"outputs": [
|
641 |
+
{
|
642 |
+
"data": {
|
643 |
+
"text/plain": [
|
644 |
+
"{'Anxiety': np.int64(0),\n",
|
645 |
+
" 'Bipolar': np.int64(1),\n",
|
646 |
+
" 'Depression': np.int64(2),\n",
|
647 |
+
" 'Normal': np.int64(3),\n",
|
648 |
+
" 'Personality disorder': np.int64(4),\n",
|
649 |
+
" 'Stress': np.int64(5),\n",
|
650 |
+
" 'Suicidal': np.int64(6)}"
|
651 |
+
]
|
652 |
+
},
|
653 |
+
"execution_count": 16,
|
654 |
+
"metadata": {},
|
655 |
+
"output_type": "execute_result"
|
656 |
+
}
|
657 |
+
],
|
658 |
+
"source": [
|
659 |
+
"label_mapping = dict(zip(encoder.classes_, encoder.transform(encoder.classes_)))\n",
|
660 |
+
"label_mapping"
|
661 |
+
]
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"cell_type": "code",
|
665 |
+
"execution_count": 17,
|
666 |
+
"metadata": {},
|
667 |
+
"outputs": [
|
668 |
+
{
|
669 |
+
"data": {
|
670 |
+
"text/html": [
|
671 |
+
"<div>\n",
|
672 |
+
"<style scoped>\n",
|
673 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
674 |
+
" vertical-align: middle;\n",
|
675 |
+
" }\n",
|
676 |
+
"\n",
|
677 |
+
" .dataframe tbody tr th {\n",
|
678 |
+
" vertical-align: top;\n",
|
679 |
+
" }\n",
|
680 |
+
"\n",
|
681 |
+
" .dataframe thead th {\n",
|
682 |
+
" text-align: right;\n",
|
683 |
+
" }\n",
|
684 |
+
"</style>\n",
|
685 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
686 |
+
" <thead>\n",
|
687 |
+
" <tr style=\"text-align: right;\">\n",
|
688 |
+
" <th></th>\n",
|
689 |
+
" <th>cleaned_statement</th>\n",
|
690 |
+
" <th>status</th>\n",
|
691 |
+
" </tr>\n",
|
692 |
+
" </thead>\n",
|
693 |
+
" <tbody>\n",
|
694 |
+
" <tr>\n",
|
695 |
+
" <th>0</th>\n",
|
696 |
+
" <td>oh gosh</td>\n",
|
697 |
+
" <td>0</td>\n",
|
698 |
+
" </tr>\n",
|
699 |
+
" <tr>\n",
|
700 |
+
" <th>1</th>\n",
|
701 |
+
" <td>trouble sleeping confused mind restless heart ...</td>\n",
|
702 |
+
" <td>0</td>\n",
|
703 |
+
" </tr>\n",
|
704 |
+
" <tr>\n",
|
705 |
+
" <th>2</th>\n",
|
706 |
+
" <td>wrong back dear forward doubt stay restless re...</td>\n",
|
707 |
+
" <td>0</td>\n",
|
708 |
+
" </tr>\n",
|
709 |
+
" <tr>\n",
|
710 |
+
" <th>3</th>\n",
|
711 |
+
" <td>ive shifted focus something else im still worried</td>\n",
|
712 |
+
" <td>0</td>\n",
|
713 |
+
" </tr>\n",
|
714 |
+
" <tr>\n",
|
715 |
+
" <th>4</th>\n",
|
716 |
+
" <td>im restless restless month boy mean</td>\n",
|
717 |
+
" <td>0</td>\n",
|
718 |
+
" </tr>\n",
|
719 |
+
" </tbody>\n",
|
720 |
+
"</table>\n",
|
721 |
+
"</div>"
|
722 |
+
],
|
723 |
+
"text/plain": [
|
724 |
+
" cleaned_statement status\n",
|
725 |
+
"0 oh gosh 0\n",
|
726 |
+
"1 trouble sleeping confused mind restless heart ... 0\n",
|
727 |
+
"2 wrong back dear forward doubt stay restless re... 0\n",
|
728 |
+
"3 ive shifted focus something else im still worried 0\n",
|
729 |
+
"4 im restless restless month boy mean 0"
|
730 |
+
]
|
731 |
+
},
|
732 |
+
"execution_count": 17,
|
733 |
+
"metadata": {},
|
734 |
+
"output_type": "execute_result"
|
735 |
+
}
|
736 |
+
],
|
737 |
+
"source": [
|
738 |
+
"df_2.head()"
|
739 |
+
]
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"cell_type": "code",
|
743 |
+
"execution_count": 20,
|
744 |
+
"metadata": {},
|
745 |
+
"outputs": [],
|
746 |
+
"source": [
|
747 |
+
"# splitting the data \n",
|
748 |
+
"from sklearn.model_selection import train_test_split\n",
|
749 |
+
"X = df_2['cleaned_statement']\n",
|
750 |
+
"y = df_2['status']\n",
|
751 |
+
"\n",
|
752 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)"
|
753 |
+
]
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"cell_type": "code",
|
757 |
+
"execution_count": 21,
|
758 |
+
"metadata": {},
|
759 |
+
"outputs": [],
|
760 |
+
"source": [
|
761 |
+
"# creating vectors for the cleaned_statement column\n",
|
762 |
+
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
763 |
+
"\n",
|
764 |
+
"# Vectorize the text using TF-IDF\n",
|
765 |
+
"vectorizer = TfidfVectorizer()\n",
|
766 |
+
"X_train_tfidf = vectorizer.fit_transform(X_train)\n",
|
767 |
+
"X_test_tfidf = vectorizer.transform(X_test)\n"
|
768 |
+
]
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"cell_type": "code",
|
772 |
+
"execution_count": 26,
|
773 |
+
"metadata": {},
|
774 |
+
"outputs": [
|
775 |
+
{
|
776 |
+
"data": {
|
777 |
+
"text/html": [
|
778 |
+
"<style>#sk-container-id-2 {\n",
|
779 |
+
" /* Definition of color scheme common for light and dark mode */\n",
|
780 |
+
" --sklearn-color-text: black;\n",
|
781 |
+
" --sklearn-color-line: gray;\n",
|
782 |
+
" /* Definition of color scheme for unfitted estimators */\n",
|
783 |
+
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
|
784 |
+
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
|
785 |
+
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
|
786 |
+
" --sklearn-color-unfitted-level-3: chocolate;\n",
|
787 |
+
" /* Definition of color scheme for fitted estimators */\n",
|
788 |
+
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
|
789 |
+
" --sklearn-color-fitted-level-1: #d4ebff;\n",
|
790 |
+
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
|
791 |
+
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
|
792 |
+
"\n",
|
793 |
+
" /* Specific color for light theme */\n",
|
794 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
795 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
|
796 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
797 |
+
" --sklearn-color-icon: #696969;\n",
|
798 |
+
"\n",
|
799 |
+
" @media (prefers-color-scheme: dark) {\n",
|
800 |
+
" /* Redefinition of color scheme for dark theme */\n",
|
801 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
802 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
|
803 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
804 |
+
" --sklearn-color-icon: #878787;\n",
|
805 |
+
" }\n",
|
806 |
+
"}\n",
|
807 |
+
"\n",
|
808 |
+
"#sk-container-id-2 {\n",
|
809 |
+
" color: var(--sklearn-color-text);\n",
|
810 |
+
"}\n",
|
811 |
+
"\n",
|
812 |
+
"#sk-container-id-2 pre {\n",
|
813 |
+
" padding: 0;\n",
|
814 |
+
"}\n",
|
815 |
+
"\n",
|
816 |
+
"#sk-container-id-2 input.sk-hidden--visually {\n",
|
817 |
+
" border: 0;\n",
|
818 |
+
" clip: rect(1px 1px 1px 1px);\n",
|
819 |
+
" clip: rect(1px, 1px, 1px, 1px);\n",
|
820 |
+
" height: 1px;\n",
|
821 |
+
" margin: -1px;\n",
|
822 |
+
" overflow: hidden;\n",
|
823 |
+
" padding: 0;\n",
|
824 |
+
" position: absolute;\n",
|
825 |
+
" width: 1px;\n",
|
826 |
+
"}\n",
|
827 |
+
"\n",
|
828 |
+
"#sk-container-id-2 div.sk-dashed-wrapped {\n",
|
829 |
+
" border: 1px dashed var(--sklearn-color-line);\n",
|
830 |
+
" margin: 0 0.4em 0.5em 0.4em;\n",
|
831 |
+
" box-sizing: border-box;\n",
|
832 |
+
" padding-bottom: 0.4em;\n",
|
833 |
+
" background-color: var(--sklearn-color-background);\n",
|
834 |
+
"}\n",
|
835 |
+
"\n",
|
836 |
+
"#sk-container-id-2 div.sk-container {\n",
|
837 |
+
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
|
838 |
+
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
|
839 |
+
" so we also need the `!important` here to be able to override the\n",
|
840 |
+
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
|
841 |
+
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
|
842 |
+
" display: inline-block !important;\n",
|
843 |
+
" position: relative;\n",
|
844 |
+
"}\n",
|
845 |
+
"\n",
|
846 |
+
"#sk-container-id-2 div.sk-text-repr-fallback {\n",
|
847 |
+
" display: none;\n",
|
848 |
+
"}\n",
|
849 |
+
"\n",
|
850 |
+
"div.sk-parallel-item,\n",
|
851 |
+
"div.sk-serial,\n",
|
852 |
+
"div.sk-item {\n",
|
853 |
+
" /* draw centered vertical line to link estimators */\n",
|
854 |
+
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
|
855 |
+
" background-size: 2px 100%;\n",
|
856 |
+
" background-repeat: no-repeat;\n",
|
857 |
+
" background-position: center center;\n",
|
858 |
+
"}\n",
|
859 |
+
"\n",
|
860 |
+
"/* Parallel-specific style estimator block */\n",
|
861 |
+
"\n",
|
862 |
+
"#sk-container-id-2 div.sk-parallel-item::after {\n",
|
863 |
+
" content: \"\";\n",
|
864 |
+
" width: 100%;\n",
|
865 |
+
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
|
866 |
+
" flex-grow: 1;\n",
|
867 |
+
"}\n",
|
868 |
+
"\n",
|
869 |
+
"#sk-container-id-2 div.sk-parallel {\n",
|
870 |
+
" display: flex;\n",
|
871 |
+
" align-items: stretch;\n",
|
872 |
+
" justify-content: center;\n",
|
873 |
+
" background-color: var(--sklearn-color-background);\n",
|
874 |
+
" position: relative;\n",
|
875 |
+
"}\n",
|
876 |
+
"\n",
|
877 |
+
"#sk-container-id-2 div.sk-parallel-item {\n",
|
878 |
+
" display: flex;\n",
|
879 |
+
" flex-direction: column;\n",
|
880 |
+
"}\n",
|
881 |
+
"\n",
|
882 |
+
"#sk-container-id-2 div.sk-parallel-item:first-child::after {\n",
|
883 |
+
" align-self: flex-end;\n",
|
884 |
+
" width: 50%;\n",
|
885 |
+
"}\n",
|
886 |
+
"\n",
|
887 |
+
"#sk-container-id-2 div.sk-parallel-item:last-child::after {\n",
|
888 |
+
" align-self: flex-start;\n",
|
889 |
+
" width: 50%;\n",
|
890 |
+
"}\n",
|
891 |
+
"\n",
|
892 |
+
"#sk-container-id-2 div.sk-parallel-item:only-child::after {\n",
|
893 |
+
" width: 0;\n",
|
894 |
+
"}\n",
|
895 |
+
"\n",
|
896 |
+
"/* Serial-specific style estimator block */\n",
|
897 |
+
"\n",
|
898 |
+
"#sk-container-id-2 div.sk-serial {\n",
|
899 |
+
" display: flex;\n",
|
900 |
+
" flex-direction: column;\n",
|
901 |
+
" align-items: center;\n",
|
902 |
+
" background-color: var(--sklearn-color-background);\n",
|
903 |
+
" padding-right: 1em;\n",
|
904 |
+
" padding-left: 1em;\n",
|
905 |
+
"}\n",
|
906 |
+
"\n",
|
907 |
+
"\n",
|
908 |
+
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
|
909 |
+
"clickable and can be expanded/collapsed.\n",
|
910 |
+
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
|
911 |
+
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
|
912 |
+
"*/\n",
|
913 |
+
"\n",
|
914 |
+
"/* Pipeline and ColumnTransformer style (default) */\n",
|
915 |
+
"\n",
|
916 |
+
"#sk-container-id-2 div.sk-toggleable {\n",
|
917 |
+
" /* Default theme specific background. It is overwritten whether we have a\n",
|
918 |
+
" specific estimator or a Pipeline/ColumnTransformer */\n",
|
919 |
+
" background-color: var(--sklearn-color-background);\n",
|
920 |
+
"}\n",
|
921 |
+
"\n",
|
922 |
+
"/* Toggleable label */\n",
|
923 |
+
"#sk-container-id-2 label.sk-toggleable__label {\n",
|
924 |
+
" cursor: pointer;\n",
|
925 |
+
" display: block;\n",
|
926 |
+
" width: 100%;\n",
|
927 |
+
" margin-bottom: 0;\n",
|
928 |
+
" padding: 0.5em;\n",
|
929 |
+
" box-sizing: border-box;\n",
|
930 |
+
" text-align: center;\n",
|
931 |
+
"}\n",
|
932 |
+
"\n",
|
933 |
+
"#sk-container-id-2 label.sk-toggleable__label-arrow:before {\n",
|
934 |
+
" /* Arrow on the left of the label */\n",
|
935 |
+
" content: \"▸\";\n",
|
936 |
+
" float: left;\n",
|
937 |
+
" margin-right: 0.25em;\n",
|
938 |
+
" color: var(--sklearn-color-icon);\n",
|
939 |
+
"}\n",
|
940 |
+
"\n",
|
941 |
+
"#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {\n",
|
942 |
+
" color: var(--sklearn-color-text);\n",
|
943 |
+
"}\n",
|
944 |
+
"\n",
|
945 |
+
"/* Toggleable content - dropdown */\n",
|
946 |
+
"\n",
|
947 |
+
"#sk-container-id-2 div.sk-toggleable__content {\n",
|
948 |
+
" max-height: 0;\n",
|
949 |
+
" max-width: 0;\n",
|
950 |
+
" overflow: hidden;\n",
|
951 |
+
" text-align: left;\n",
|
952 |
+
" /* unfitted */\n",
|
953 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
954 |
+
"}\n",
|
955 |
+
"\n",
|
956 |
+
"#sk-container-id-2 div.sk-toggleable__content.fitted {\n",
|
957 |
+
" /* fitted */\n",
|
958 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
959 |
+
"}\n",
|
960 |
+
"\n",
|
961 |
+
"#sk-container-id-2 div.sk-toggleable__content pre {\n",
|
962 |
+
" margin: 0.2em;\n",
|
963 |
+
" border-radius: 0.25em;\n",
|
964 |
+
" color: var(--sklearn-color-text);\n",
|
965 |
+
" /* unfitted */\n",
|
966 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
967 |
+
"}\n",
|
968 |
+
"\n",
|
969 |
+
"#sk-container-id-2 div.sk-toggleable__content.fitted pre {\n",
|
970 |
+
" /* unfitted */\n",
|
971 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
972 |
+
"}\n",
|
973 |
+
"\n",
|
974 |
+
"#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
|
975 |
+
" /* Expand drop-down */\n",
|
976 |
+
" max-height: 200px;\n",
|
977 |
+
" max-width: 100%;\n",
|
978 |
+
" overflow: auto;\n",
|
979 |
+
"}\n",
|
980 |
+
"\n",
|
981 |
+
"#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
|
982 |
+
" content: \"▾\";\n",
|
983 |
+
"}\n",
|
984 |
+
"\n",
|
985 |
+
"/* Pipeline/ColumnTransformer-specific style */\n",
|
986 |
+
"\n",
|
987 |
+
"#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
988 |
+
" color: var(--sklearn-color-text);\n",
|
989 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
990 |
+
"}\n",
|
991 |
+
"\n",
|
992 |
+
"#sk-container-id-2 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
993 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
994 |
+
"}\n",
|
995 |
+
"\n",
|
996 |
+
"/* Estimator-specific style */\n",
|
997 |
+
"\n",
|
998 |
+
"/* Colorize estimator box */\n",
|
999 |
+
"#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
1000 |
+
" /* unfitted */\n",
|
1001 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
1002 |
+
"}\n",
|
1003 |
+
"\n",
|
1004 |
+
"#sk-container-id-2 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
1005 |
+
" /* fitted */\n",
|
1006 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
1007 |
+
"}\n",
|
1008 |
+
"\n",
|
1009 |
+
"#sk-container-id-2 div.sk-label label.sk-toggleable__label,\n",
|
1010 |
+
"#sk-container-id-2 div.sk-label label {\n",
|
1011 |
+
" /* The background is the default theme color */\n",
|
1012 |
+
" color: var(--sklearn-color-text-on-default-background);\n",
|
1013 |
+
"}\n",
|
1014 |
+
"\n",
|
1015 |
+
"/* On hover, darken the color of the background */\n",
|
1016 |
+
"#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {\n",
|
1017 |
+
" color: var(--sklearn-color-text);\n",
|
1018 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
1019 |
+
"}\n",
|
1020 |
+
"\n",
|
1021 |
+
"/* Label box, darken color on hover, fitted */\n",
|
1022 |
+
"#sk-container-id-2 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
|
1023 |
+
" color: var(--sklearn-color-text);\n",
|
1024 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
1025 |
+
"}\n",
|
1026 |
+
"\n",
|
1027 |
+
"/* Estimator label */\n",
|
1028 |
+
"\n",
|
1029 |
+
"#sk-container-id-2 div.sk-label label {\n",
|
1030 |
+
" font-family: monospace;\n",
|
1031 |
+
" font-weight: bold;\n",
|
1032 |
+
" display: inline-block;\n",
|
1033 |
+
" line-height: 1.2em;\n",
|
1034 |
+
"}\n",
|
1035 |
+
"\n",
|
1036 |
+
"#sk-container-id-2 div.sk-label-container {\n",
|
1037 |
+
" text-align: center;\n",
|
1038 |
+
"}\n",
|
1039 |
+
"\n",
|
1040 |
+
"/* Estimator-specific */\n",
|
1041 |
+
"#sk-container-id-2 div.sk-estimator {\n",
|
1042 |
+
" font-family: monospace;\n",
|
1043 |
+
" border: 1px dotted var(--sklearn-color-border-box);\n",
|
1044 |
+
" border-radius: 0.25em;\n",
|
1045 |
+
" box-sizing: border-box;\n",
|
1046 |
+
" margin-bottom: 0.5em;\n",
|
1047 |
+
" /* unfitted */\n",
|
1048 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
1049 |
+
"}\n",
|
1050 |
+
"\n",
|
1051 |
+
"#sk-container-id-2 div.sk-estimator.fitted {\n",
|
1052 |
+
" /* fitted */\n",
|
1053 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
1054 |
+
"}\n",
|
1055 |
+
"\n",
|
1056 |
+
"/* on hover */\n",
|
1057 |
+
"#sk-container-id-2 div.sk-estimator:hover {\n",
|
1058 |
+
" /* unfitted */\n",
|
1059 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
1060 |
+
"}\n",
|
1061 |
+
"\n",
|
1062 |
+
"#sk-container-id-2 div.sk-estimator.fitted:hover {\n",
|
1063 |
+
" /* fitted */\n",
|
1064 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
1065 |
+
"}\n",
|
1066 |
+
"\n",
|
1067 |
+
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
|
1068 |
+
"\n",
|
1069 |
+
"/* Common style for \"i\" and \"?\" */\n",
|
1070 |
+
"\n",
|
1071 |
+
".sk-estimator-doc-link,\n",
|
1072 |
+
"a:link.sk-estimator-doc-link,\n",
|
1073 |
+
"a:visited.sk-estimator-doc-link {\n",
|
1074 |
+
" float: right;\n",
|
1075 |
+
" font-size: smaller;\n",
|
1076 |
+
" line-height: 1em;\n",
|
1077 |
+
" font-family: monospace;\n",
|
1078 |
+
" background-color: var(--sklearn-color-background);\n",
|
1079 |
+
" border-radius: 1em;\n",
|
1080 |
+
" height: 1em;\n",
|
1081 |
+
" width: 1em;\n",
|
1082 |
+
" text-decoration: none !important;\n",
|
1083 |
+
" margin-left: 1ex;\n",
|
1084 |
+
" /* unfitted */\n",
|
1085 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
1086 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
1087 |
+
"}\n",
|
1088 |
+
"\n",
|
1089 |
+
".sk-estimator-doc-link.fitted,\n",
|
1090 |
+
"a:link.sk-estimator-doc-link.fitted,\n",
|
1091 |
+
"a:visited.sk-estimator-doc-link.fitted {\n",
|
1092 |
+
" /* fitted */\n",
|
1093 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
1094 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
1095 |
+
"}\n",
|
1096 |
+
"\n",
|
1097 |
+
"/* On hover */\n",
|
1098 |
+
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
|
1099 |
+
".sk-estimator-doc-link:hover,\n",
|
1100 |
+
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
|
1101 |
+
".sk-estimator-doc-link:hover {\n",
|
1102 |
+
" /* unfitted */\n",
|
1103 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
1104 |
+
" color: var(--sklearn-color-background);\n",
|
1105 |
+
" text-decoration: none;\n",
|
1106 |
+
"}\n",
|
1107 |
+
"\n",
|
1108 |
+
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
|
1109 |
+
".sk-estimator-doc-link.fitted:hover,\n",
|
1110 |
+
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
|
1111 |
+
".sk-estimator-doc-link.fitted:hover {\n",
|
1112 |
+
" /* fitted */\n",
|
1113 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
1114 |
+
" color: var(--sklearn-color-background);\n",
|
1115 |
+
" text-decoration: none;\n",
|
1116 |
+
"}\n",
|
1117 |
+
"\n",
|
1118 |
+
"/* Span, style for the box shown on hovering the info icon */\n",
|
1119 |
+
".sk-estimator-doc-link span {\n",
|
1120 |
+
" display: none;\n",
|
1121 |
+
" z-index: 9999;\n",
|
1122 |
+
" position: relative;\n",
|
1123 |
+
" font-weight: normal;\n",
|
1124 |
+
" right: .2ex;\n",
|
1125 |
+
" padding: .5ex;\n",
|
1126 |
+
" margin: .5ex;\n",
|
1127 |
+
" width: min-content;\n",
|
1128 |
+
" min-width: 20ex;\n",
|
1129 |
+
" max-width: 50ex;\n",
|
1130 |
+
" color: var(--sklearn-color-text);\n",
|
1131 |
+
" box-shadow: 2pt 2pt 4pt #999;\n",
|
1132 |
+
" /* unfitted */\n",
|
1133 |
+
" background: var(--sklearn-color-unfitted-level-0);\n",
|
1134 |
+
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
|
1135 |
+
"}\n",
|
1136 |
+
"\n",
|
1137 |
+
".sk-estimator-doc-link.fitted span {\n",
|
1138 |
+
" /* fitted */\n",
|
1139 |
+
" background: var(--sklearn-color-fitted-level-0);\n",
|
1140 |
+
" border: var(--sklearn-color-fitted-level-3);\n",
|
1141 |
+
"}\n",
|
1142 |
+
"\n",
|
1143 |
+
".sk-estimator-doc-link:hover span {\n",
|
1144 |
+
" display: block;\n",
|
1145 |
+
"}\n",
|
1146 |
+
"\n",
|
1147 |
+
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
|
1148 |
+
"\n",
|
1149 |
+
"#sk-container-id-2 a.estimator_doc_link {\n",
|
1150 |
+
" float: right;\n",
|
1151 |
+
" font-size: 1rem;\n",
|
1152 |
+
" line-height: 1em;\n",
|
1153 |
+
" font-family: monospace;\n",
|
1154 |
+
" background-color: var(--sklearn-color-background);\n",
|
1155 |
+
" border-radius: 1rem;\n",
|
1156 |
+
" height: 1rem;\n",
|
1157 |
+
" width: 1rem;\n",
|
1158 |
+
" text-decoration: none;\n",
|
1159 |
+
" /* unfitted */\n",
|
1160 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
1161 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
1162 |
+
"}\n",
|
1163 |
+
"\n",
|
1164 |
+
"#sk-container-id-2 a.estimator_doc_link.fitted {\n",
|
1165 |
+
" /* fitted */\n",
|
1166 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
1167 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
1168 |
+
"}\n",
|
1169 |
+
"\n",
|
1170 |
+
"/* On hover */\n",
|
1171 |
+
"#sk-container-id-2 a.estimator_doc_link:hover {\n",
|
1172 |
+
" /* unfitted */\n",
|
1173 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
1174 |
+
" color: var(--sklearn-color-background);\n",
|
1175 |
+
" text-decoration: none;\n",
|
1176 |
+
"}\n",
|
1177 |
+
"\n",
|
1178 |
+
"#sk-container-id-2 a.estimator_doc_link.fitted:hover {\n",
|
1179 |
+
" /* fitted */\n",
|
1180 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
1181 |
+
"}\n",
|
1182 |
+
"</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>RandomForestClassifier()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" checked><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> RandomForestClassifier<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.ensemble.RandomForestClassifier.html\">?<span>Documentation for RandomForestClassifier</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>RandomForestClassifier()</pre></div> </div></div></div></div>"
|
1183 |
+
],
|
1184 |
+
"text/plain": [
|
1185 |
+
"RandomForestClassifier()"
|
1186 |
+
]
|
1187 |
+
},
|
1188 |
+
"execution_count": 26,
|
1189 |
+
"metadata": {},
|
1190 |
+
"output_type": "execute_result"
|
1191 |
+
}
|
1192 |
+
],
|
1193 |
+
"source": [
|
1194 |
+
"# random forest classifier\n",
|
1195 |
+
"from sklearn.ensemble import RandomForestClassifier\n",
|
1196 |
+
"\n",
|
1197 |
+
"# Initialize the model\n",
|
1198 |
+
"model = RandomForestClassifier()\n",
|
1199 |
+
"\n",
|
1200 |
+
"# Train the model\n",
|
1201 |
+
"model.fit(X_train_tfidf, y_train)\n"
|
1202 |
+
]
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"cell_type": "code",
|
1206 |
+
"execution_count": 27,
|
1207 |
+
"metadata": {},
|
1208 |
+
"outputs": [
|
1209 |
+
{
|
1210 |
+
"name": "stdout",
|
1211 |
+
"output_type": "stream",
|
1212 |
+
"text": [
|
1213 |
+
"Accuracy: 0.688715953307393\n",
|
1214 |
+
" precision recall f1-score support\n",
|
1215 |
+
"\n",
|
1216 |
+
" 0 0.90 0.50 0.64 768\n",
|
1217 |
+
" 1 0.97 0.37 0.53 556\n",
|
1218 |
+
" 2 0.55 0.82 0.66 3081\n",
|
1219 |
+
" 3 0.79 0.95 0.86 3269\n",
|
1220 |
+
" 4 1.00 0.26 0.41 215\n",
|
1221 |
+
" 5 0.97 0.21 0.35 517\n",
|
1222 |
+
" 6 0.71 0.40 0.52 2131\n",
|
1223 |
+
"\n",
|
1224 |
+
" accuracy 0.69 10537\n",
|
1225 |
+
" macro avg 0.84 0.50 0.57 10537\n",
|
1226 |
+
"weighted avg 0.74 0.69 0.67 10537\n",
|
1227 |
+
"\n"
|
1228 |
+
]
|
1229 |
+
}
|
1230 |
+
],
|
1231 |
+
"source": [
|
1232 |
+
"from sklearn.metrics import classification_report, accuracy_score\n",
|
1233 |
+
"# making predictions\n",
|
1234 |
+
"y_pred = model.predict(X_test_tfidf)\n",
|
1235 |
+
"\n",
|
1236 |
+
"# checking the accuracy\n",
|
1237 |
+
"accuracy = accuracy_score(y_test, y_pred)\n",
|
1238 |
+
"print('Accuracy:', accuracy)\n",
|
1239 |
+
"\n",
|
1240 |
+
"# classification report\n",
|
1241 |
+
"report = classification_report(y_test, y_pred)\n",
|
1242 |
+
"print(report)"
|
1243 |
+
]
|
1244 |
+
},
|
1245 |
+
{
|
1246 |
+
"cell_type": "code",
|
1247 |
+
"execution_count": 28,
|
1248 |
+
"metadata": {},
|
1249 |
+
"outputs": [],
|
1250 |
+
"source": [
|
1251 |
+
"# creating a pipeline\n",
|
1252 |
+
"from sklearn.base import BaseEstimator, TransformerMixin\n",
|
1253 |
+
"from sklearn.pipeline import Pipeline\n",
|
1254 |
+
"\n",
|
1255 |
+
"# Custom transformer for text preprocessing\n",
|
1256 |
+
"class TextPreprocessor(BaseEstimator, TransformerMixin):\n",
|
1257 |
+
" def __init__(self):\n",
|
1258 |
+
" self.stop_words = set(stopwords.words('english'))\n",
|
1259 |
+
" self.lemmatizer = WordNetLemmatizer()\n",
|
1260 |
+
" \n",
|
1261 |
+
" def preprocess_text(self, text):\n",
|
1262 |
+
" # Lowercase the text\n",
|
1263 |
+
" text = text.lower()\n",
|
1264 |
+
" \n",
|
1265 |
+
" # Remove punctuation\n",
|
1266 |
+
" text = re.sub(f'[{re.escape(string.punctuation)}]', '', text)\n",
|
1267 |
+
" \n",
|
1268 |
+
" # Remove numbers\n",
|
1269 |
+
" text = re.sub(r'\\d+', '', text)\n",
|
1270 |
+
" \n",
|
1271 |
+
" # Tokenize the text\n",
|
1272 |
+
" words = text.split()\n",
|
1273 |
+
" \n",
|
1274 |
+
" # Remove stopwords and apply lemmatization\n",
|
1275 |
+
" words = [self.lemmatizer.lemmatize(word) for word in words if word not in self.stop_words]\n",
|
1276 |
+
" \n",
|
1277 |
+
" # Join words back into a single string\n",
|
1278 |
+
" cleaned_text = ' '.join(words)\n",
|
1279 |
+
" \n",
|
1280 |
+
" return cleaned_text\n",
|
1281 |
+
" \n",
|
1282 |
+
" def fit(self, X, y=None):\n",
|
1283 |
+
" return self\n",
|
1284 |
+
" \n",
|
1285 |
+
" def transform(self, X, y=None):\n",
|
1286 |
+
" return [self.preprocess_text(text) for text in X]\n",
|
1287 |
+
" \n",
|
1288 |
+
" \n"
|
1289 |
+
]
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"cell_type": "code",
|
1293 |
+
"execution_count": 29,
|
1294 |
+
"metadata": {},
|
1295 |
+
"outputs": [],
|
1296 |
+
"source": [
|
1297 |
+
"pipeline = Pipeline([\n",
|
1298 |
+
" ('preprocessor', TextPreprocessor()),\n",
|
1299 |
+
" ('vectorizer', TfidfVectorizer()),\n",
|
1300 |
+
" ('classifier', RandomForestClassifier())\n",
|
1301 |
+
"])"
|
1302 |
+
]
|
1303 |
+
},
|
1304 |
+
{
|
1305 |
+
"cell_type": "code",
|
1306 |
+
"execution_count": 31,
|
1307 |
+
"metadata": {},
|
1308 |
+
"outputs": [],
|
1309 |
+
"source": [
|
1310 |
+
"X = df_1['statement']\n",
|
1311 |
+
"y = df_2['status']\n",
|
1312 |
+
"\n",
|
1313 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)"
|
1314 |
+
]
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"cell_type": "code",
|
1318 |
+
"execution_count": 32,
|
1319 |
+
"metadata": {},
|
1320 |
+
"outputs": [
|
1321 |
+
{
|
1322 |
+
"data": {
|
1323 |
+
"text/html": [
|
1324 |
+
"<style>#sk-container-id-3 {\n",
|
1325 |
+
" /* Definition of color scheme common for light and dark mode */\n",
|
1326 |
+
" --sklearn-color-text: black;\n",
|
1327 |
+
" --sklearn-color-line: gray;\n",
|
1328 |
+
" /* Definition of color scheme for unfitted estimators */\n",
|
1329 |
+
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
|
1330 |
+
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
|
1331 |
+
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
|
1332 |
+
" --sklearn-color-unfitted-level-3: chocolate;\n",
|
1333 |
+
" /* Definition of color scheme for fitted estimators */\n",
|
1334 |
+
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
|
1335 |
+
" --sklearn-color-fitted-level-1: #d4ebff;\n",
|
1336 |
+
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
|
1337 |
+
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
|
1338 |
+
"\n",
|
1339 |
+
" /* Specific color for light theme */\n",
|
1340 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
1341 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
|
1342 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
1343 |
+
" --sklearn-color-icon: #696969;\n",
|
1344 |
+
"\n",
|
1345 |
+
" @media (prefers-color-scheme: dark) {\n",
|
1346 |
+
" /* Redefinition of color scheme for dark theme */\n",
|
1347 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
1348 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
|
1349 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
1350 |
+
" --sklearn-color-icon: #878787;\n",
|
1351 |
+
" }\n",
|
1352 |
+
"}\n",
|
1353 |
+
"\n",
|
1354 |
+
"#sk-container-id-3 {\n",
|
1355 |
+
" color: var(--sklearn-color-text);\n",
|
1356 |
+
"}\n",
|
1357 |
+
"\n",
|
1358 |
+
"#sk-container-id-3 pre {\n",
|
1359 |
+
" padding: 0;\n",
|
1360 |
+
"}\n",
|
1361 |
+
"\n",
|
1362 |
+
"#sk-container-id-3 input.sk-hidden--visually {\n",
|
1363 |
+
" border: 0;\n",
|
1364 |
+
" clip: rect(1px 1px 1px 1px);\n",
|
1365 |
+
" clip: rect(1px, 1px, 1px, 1px);\n",
|
1366 |
+
" height: 1px;\n",
|
1367 |
+
" margin: -1px;\n",
|
1368 |
+
" overflow: hidden;\n",
|
1369 |
+
" padding: 0;\n",
|
1370 |
+
" position: absolute;\n",
|
1371 |
+
" width: 1px;\n",
|
1372 |
+
"}\n",
|
1373 |
+
"\n",
|
1374 |
+
"#sk-container-id-3 div.sk-dashed-wrapped {\n",
|
1375 |
+
" border: 1px dashed var(--sklearn-color-line);\n",
|
1376 |
+
" margin: 0 0.4em 0.5em 0.4em;\n",
|
1377 |
+
" box-sizing: border-box;\n",
|
1378 |
+
" padding-bottom: 0.4em;\n",
|
1379 |
+
" background-color: var(--sklearn-color-background);\n",
|
1380 |
+
"}\n",
|
1381 |
+
"\n",
|
1382 |
+
"#sk-container-id-3 div.sk-container {\n",
|
1383 |
+
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
|
1384 |
+
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
|
1385 |
+
" so we also need the `!important` here to be able to override the\n",
|
1386 |
+
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
|
1387 |
+
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
|
1388 |
+
" display: inline-block !important;\n",
|
1389 |
+
" position: relative;\n",
|
1390 |
+
"}\n",
|
1391 |
+
"\n",
|
1392 |
+
"#sk-container-id-3 div.sk-text-repr-fallback {\n",
|
1393 |
+
" display: none;\n",
|
1394 |
+
"}\n",
|
1395 |
+
"\n",
|
1396 |
+
"div.sk-parallel-item,\n",
|
1397 |
+
"div.sk-serial,\n",
|
1398 |
+
"div.sk-item {\n",
|
1399 |
+
" /* draw centered vertical line to link estimators */\n",
|
1400 |
+
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
|
1401 |
+
" background-size: 2px 100%;\n",
|
1402 |
+
" background-repeat: no-repeat;\n",
|
1403 |
+
" background-position: center center;\n",
|
1404 |
+
"}\n",
|
1405 |
+
"\n",
|
1406 |
+
"/* Parallel-specific style estimator block */\n",
|
1407 |
+
"\n",
|
1408 |
+
"#sk-container-id-3 div.sk-parallel-item::after {\n",
|
1409 |
+
" content: \"\";\n",
|
1410 |
+
" width: 100%;\n",
|
1411 |
+
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
|
1412 |
+
" flex-grow: 1;\n",
|
1413 |
+
"}\n",
|
1414 |
+
"\n",
|
1415 |
+
"#sk-container-id-3 div.sk-parallel {\n",
|
1416 |
+
" display: flex;\n",
|
1417 |
+
" align-items: stretch;\n",
|
1418 |
+
" justify-content: center;\n",
|
1419 |
+
" background-color: var(--sklearn-color-background);\n",
|
1420 |
+
" position: relative;\n",
|
1421 |
+
"}\n",
|
1422 |
+
"\n",
|
1423 |
+
"#sk-container-id-3 div.sk-parallel-item {\n",
|
1424 |
+
" display: flex;\n",
|
1425 |
+
" flex-direction: column;\n",
|
1426 |
+
"}\n",
|
1427 |
+
"\n",
|
1428 |
+
"#sk-container-id-3 div.sk-parallel-item:first-child::after {\n",
|
1429 |
+
" align-self: flex-end;\n",
|
1430 |
+
" width: 50%;\n",
|
1431 |
+
"}\n",
|
1432 |
+
"\n",
|
1433 |
+
"#sk-container-id-3 div.sk-parallel-item:last-child::after {\n",
|
1434 |
+
" align-self: flex-start;\n",
|
1435 |
+
" width: 50%;\n",
|
1436 |
+
"}\n",
|
1437 |
+
"\n",
|
1438 |
+
"#sk-container-id-3 div.sk-parallel-item:only-child::after {\n",
|
1439 |
+
" width: 0;\n",
|
1440 |
+
"}\n",
|
1441 |
+
"\n",
|
1442 |
+
"/* Serial-specific style estimator block */\n",
|
1443 |
+
"\n",
|
1444 |
+
"#sk-container-id-3 div.sk-serial {\n",
|
1445 |
+
" display: flex;\n",
|
1446 |
+
" flex-direction: column;\n",
|
1447 |
+
" align-items: center;\n",
|
1448 |
+
" background-color: var(--sklearn-color-background);\n",
|
1449 |
+
" padding-right: 1em;\n",
|
1450 |
+
" padding-left: 1em;\n",
|
1451 |
+
"}\n",
|
1452 |
+
"\n",
|
1453 |
+
"\n",
|
1454 |
+
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
|
1455 |
+
"clickable and can be expanded/collapsed.\n",
|
1456 |
+
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
|
1457 |
+
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
|
1458 |
+
"*/\n",
|
1459 |
+
"\n",
|
1460 |
+
"/* Pipeline and ColumnTransformer style (default) */\n",
|
1461 |
+
"\n",
|
1462 |
+
"#sk-container-id-3 div.sk-toggleable {\n",
|
1463 |
+
" /* Default theme specific background. It is overwritten whether we have a\n",
|
1464 |
+
" specific estimator or a Pipeline/ColumnTransformer */\n",
|
1465 |
+
" background-color: var(--sklearn-color-background);\n",
|
1466 |
+
"}\n",
|
1467 |
+
"\n",
|
1468 |
+
"/* Toggleable label */\n",
|
1469 |
+
"#sk-container-id-3 label.sk-toggleable__label {\n",
|
1470 |
+
" cursor: pointer;\n",
|
1471 |
+
" display: block;\n",
|
1472 |
+
" width: 100%;\n",
|
1473 |
+
" margin-bottom: 0;\n",
|
1474 |
+
" padding: 0.5em;\n",
|
1475 |
+
" box-sizing: border-box;\n",
|
1476 |
+
" text-align: center;\n",
|
1477 |
+
"}\n",
|
1478 |
+
"\n",
|
1479 |
+
"#sk-container-id-3 label.sk-toggleable__label-arrow:before {\n",
|
1480 |
+
" /* Arrow on the left of the label */\n",
|
1481 |
+
" content: \"▸\";\n",
|
1482 |
+
" float: left;\n",
|
1483 |
+
" margin-right: 0.25em;\n",
|
1484 |
+
" color: var(--sklearn-color-icon);\n",
|
1485 |
+
"}\n",
|
1486 |
+
"\n",
|
1487 |
+
"#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {\n",
|
1488 |
+
" color: var(--sklearn-color-text);\n",
|
1489 |
+
"}\n",
|
1490 |
+
"\n",
|
1491 |
+
"/* Toggleable content - dropdown */\n",
|
1492 |
+
"\n",
|
1493 |
+
"#sk-container-id-3 div.sk-toggleable__content {\n",
|
1494 |
+
" max-height: 0;\n",
|
1495 |
+
" max-width: 0;\n",
|
1496 |
+
" overflow: hidden;\n",
|
1497 |
+
" text-align: left;\n",
|
1498 |
+
" /* unfitted */\n",
|
1499 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
1500 |
+
"}\n",
|
1501 |
+
"\n",
|
1502 |
+
"#sk-container-id-3 div.sk-toggleable__content.fitted {\n",
|
1503 |
+
" /* fitted */\n",
|
1504 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
1505 |
+
"}\n",
|
1506 |
+
"\n",
|
1507 |
+
"#sk-container-id-3 div.sk-toggleable__content pre {\n",
|
1508 |
+
" margin: 0.2em;\n",
|
1509 |
+
" border-radius: 0.25em;\n",
|
1510 |
+
" color: var(--sklearn-color-text);\n",
|
1511 |
+
" /* unfitted */\n",
|
1512 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
1513 |
+
"}\n",
|
1514 |
+
"\n",
|
1515 |
+
"#sk-container-id-3 div.sk-toggleable__content.fitted pre {\n",
|
1516 |
+
" /* unfitted */\n",
|
1517 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
1518 |
+
"}\n",
|
1519 |
+
"\n",
|
1520 |
+
"#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
|
1521 |
+
" /* Expand drop-down */\n",
|
1522 |
+
" max-height: 200px;\n",
|
1523 |
+
" max-width: 100%;\n",
|
1524 |
+
" overflow: auto;\n",
|
1525 |
+
"}\n",
|
1526 |
+
"\n",
|
1527 |
+
"#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
|
1528 |
+
" content: \"▾\";\n",
|
1529 |
+
"}\n",
|
1530 |
+
"\n",
|
1531 |
+
"/* Pipeline/ColumnTransformer-specific style */\n",
|
1532 |
+
"\n",
|
1533 |
+
"#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
1534 |
+
" color: var(--sklearn-color-text);\n",
|
1535 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
1536 |
+
"}\n",
|
1537 |
+
"\n",
|
1538 |
+
"#sk-container-id-3 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
1539 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
1540 |
+
"}\n",
|
1541 |
+
"\n",
|
1542 |
+
"/* Estimator-specific style */\n",
|
1543 |
+
"\n",
|
1544 |
+
"/* Colorize estimator box */\n",
|
1545 |
+
"#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
1546 |
+
" /* unfitted */\n",
|
1547 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
1548 |
+
"}\n",
|
1549 |
+
"\n",
|
1550 |
+
"#sk-container-id-3 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
1551 |
+
" /* fitted */\n",
|
1552 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
1553 |
+
"}\n",
|
1554 |
+
"\n",
|
1555 |
+
"#sk-container-id-3 div.sk-label label.sk-toggleable__label,\n",
|
1556 |
+
"#sk-container-id-3 div.sk-label label {\n",
|
1557 |
+
" /* The background is the default theme color */\n",
|
1558 |
+
" color: var(--sklearn-color-text-on-default-background);\n",
|
1559 |
+
"}\n",
|
1560 |
+
"\n",
|
1561 |
+
"/* On hover, darken the color of the background */\n",
|
1562 |
+
"#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {\n",
|
1563 |
+
" color: var(--sklearn-color-text);\n",
|
1564 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
1565 |
+
"}\n",
|
1566 |
+
"\n",
|
1567 |
+
"/* Label box, darken color on hover, fitted */\n",
|
1568 |
+
"#sk-container-id-3 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
|
1569 |
+
" color: var(--sklearn-color-text);\n",
|
1570 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
1571 |
+
"}\n",
|
1572 |
+
"\n",
|
1573 |
+
"/* Estimator label */\n",
|
1574 |
+
"\n",
|
1575 |
+
"#sk-container-id-3 div.sk-label label {\n",
|
1576 |
+
" font-family: monospace;\n",
|
1577 |
+
" font-weight: bold;\n",
|
1578 |
+
" display: inline-block;\n",
|
1579 |
+
" line-height: 1.2em;\n",
|
1580 |
+
"}\n",
|
1581 |
+
"\n",
|
1582 |
+
"#sk-container-id-3 div.sk-label-container {\n",
|
1583 |
+
" text-align: center;\n",
|
1584 |
+
"}\n",
|
1585 |
+
"\n",
|
1586 |
+
"/* Estimator-specific */\n",
|
1587 |
+
"#sk-container-id-3 div.sk-estimator {\n",
|
1588 |
+
" font-family: monospace;\n",
|
1589 |
+
" border: 1px dotted var(--sklearn-color-border-box);\n",
|
1590 |
+
" border-radius: 0.25em;\n",
|
1591 |
+
" box-sizing: border-box;\n",
|
1592 |
+
" margin-bottom: 0.5em;\n",
|
1593 |
+
" /* unfitted */\n",
|
1594 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
1595 |
+
"}\n",
|
1596 |
+
"\n",
|
1597 |
+
"#sk-container-id-3 div.sk-estimator.fitted {\n",
|
1598 |
+
" /* fitted */\n",
|
1599 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
1600 |
+
"}\n",
|
1601 |
+
"\n",
|
1602 |
+
"/* on hover */\n",
|
1603 |
+
"#sk-container-id-3 div.sk-estimator:hover {\n",
|
1604 |
+
" /* unfitted */\n",
|
1605 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
1606 |
+
"}\n",
|
1607 |
+
"\n",
|
1608 |
+
"#sk-container-id-3 div.sk-estimator.fitted:hover {\n",
|
1609 |
+
" /* fitted */\n",
|
1610 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
1611 |
+
"}\n",
|
1612 |
+
"\n",
|
1613 |
+
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
|
1614 |
+
"\n",
|
1615 |
+
"/* Common style for \"i\" and \"?\" */\n",
|
1616 |
+
"\n",
|
1617 |
+
".sk-estimator-doc-link,\n",
|
1618 |
+
"a:link.sk-estimator-doc-link,\n",
|
1619 |
+
"a:visited.sk-estimator-doc-link {\n",
|
1620 |
+
" float: right;\n",
|
1621 |
+
" font-size: smaller;\n",
|
1622 |
+
" line-height: 1em;\n",
|
1623 |
+
" font-family: monospace;\n",
|
1624 |
+
" background-color: var(--sklearn-color-background);\n",
|
1625 |
+
" border-radius: 1em;\n",
|
1626 |
+
" height: 1em;\n",
|
1627 |
+
" width: 1em;\n",
|
1628 |
+
" text-decoration: none !important;\n",
|
1629 |
+
" margin-left: 1ex;\n",
|
1630 |
+
" /* unfitted */\n",
|
1631 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
1632 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
1633 |
+
"}\n",
|
1634 |
+
"\n",
|
1635 |
+
".sk-estimator-doc-link.fitted,\n",
|
1636 |
+
"a:link.sk-estimator-doc-link.fitted,\n",
|
1637 |
+
"a:visited.sk-estimator-doc-link.fitted {\n",
|
1638 |
+
" /* fitted */\n",
|
1639 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
1640 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
1641 |
+
"}\n",
|
1642 |
+
"\n",
|
1643 |
+
"/* On hover */\n",
|
1644 |
+
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
|
1645 |
+
".sk-estimator-doc-link:hover,\n",
|
1646 |
+
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
|
1647 |
+
".sk-estimator-doc-link:hover {\n",
|
1648 |
+
" /* unfitted */\n",
|
1649 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
1650 |
+
" color: var(--sklearn-color-background);\n",
|
1651 |
+
" text-decoration: none;\n",
|
1652 |
+
"}\n",
|
1653 |
+
"\n",
|
1654 |
+
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
|
1655 |
+
".sk-estimator-doc-link.fitted:hover,\n",
|
1656 |
+
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
|
1657 |
+
".sk-estimator-doc-link.fitted:hover {\n",
|
1658 |
+
" /* fitted */\n",
|
1659 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
1660 |
+
" color: var(--sklearn-color-background);\n",
|
1661 |
+
" text-decoration: none;\n",
|
1662 |
+
"}\n",
|
1663 |
+
"\n",
|
1664 |
+
"/* Span, style for the box shown on hovering the info icon */\n",
|
1665 |
+
".sk-estimator-doc-link span {\n",
|
1666 |
+
" display: none;\n",
|
1667 |
+
" z-index: 9999;\n",
|
1668 |
+
" position: relative;\n",
|
1669 |
+
" font-weight: normal;\n",
|
1670 |
+
" right: .2ex;\n",
|
1671 |
+
" padding: .5ex;\n",
|
1672 |
+
" margin: .5ex;\n",
|
1673 |
+
" width: min-content;\n",
|
1674 |
+
" min-width: 20ex;\n",
|
1675 |
+
" max-width: 50ex;\n",
|
1676 |
+
" color: var(--sklearn-color-text);\n",
|
1677 |
+
" box-shadow: 2pt 2pt 4pt #999;\n",
|
1678 |
+
" /* unfitted */\n",
|
1679 |
+
" background: var(--sklearn-color-unfitted-level-0);\n",
|
1680 |
+
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
|
1681 |
+
"}\n",
|
1682 |
+
"\n",
|
1683 |
+
".sk-estimator-doc-link.fitted span {\n",
|
1684 |
+
" /* fitted */\n",
|
1685 |
+
" background: var(--sklearn-color-fitted-level-0);\n",
|
1686 |
+
" border: var(--sklearn-color-fitted-level-3);\n",
|
1687 |
+
"}\n",
|
1688 |
+
"\n",
|
1689 |
+
".sk-estimator-doc-link:hover span {\n",
|
1690 |
+
" display: block;\n",
|
1691 |
+
"}\n",
|
1692 |
+
"\n",
|
1693 |
+
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
|
1694 |
+
"\n",
|
1695 |
+
"#sk-container-id-3 a.estimator_doc_link {\n",
|
1696 |
+
" float: right;\n",
|
1697 |
+
" font-size: 1rem;\n",
|
1698 |
+
" line-height: 1em;\n",
|
1699 |
+
" font-family: monospace;\n",
|
1700 |
+
" background-color: var(--sklearn-color-background);\n",
|
1701 |
+
" border-radius: 1rem;\n",
|
1702 |
+
" height: 1rem;\n",
|
1703 |
+
" width: 1rem;\n",
|
1704 |
+
" text-decoration: none;\n",
|
1705 |
+
" /* unfitted */\n",
|
1706 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
1707 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
1708 |
+
"}\n",
|
1709 |
+
"\n",
|
1710 |
+
"#sk-container-id-3 a.estimator_doc_link.fitted {\n",
|
1711 |
+
" /* fitted */\n",
|
1712 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
1713 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
1714 |
+
"}\n",
|
1715 |
+
"\n",
|
1716 |
+
"/* On hover */\n",
|
1717 |
+
"#sk-container-id-3 a.estimator_doc_link:hover {\n",
|
1718 |
+
" /* unfitted */\n",
|
1719 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
1720 |
+
" color: var(--sklearn-color-background);\n",
|
1721 |
+
" text-decoration: none;\n",
|
1722 |
+
"}\n",
|
1723 |
+
"\n",
|
1724 |
+
"#sk-container-id-3 a.estimator_doc_link.fitted:hover {\n",
|
1725 |
+
" /* fitted */\n",
|
1726 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
1727 |
+
"}\n",
|
1728 |
+
"</style><div id=\"sk-container-id-3\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[('preprocessor', TextPreprocessor()),\n",
|
1729 |
+
" ('vectorizer', TfidfVectorizer()),\n",
|
1730 |
+
" ('classifier', RandomForestClassifier())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" ><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> Pipeline<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.pipeline.Pipeline.html\">?<span>Documentation for Pipeline</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>Pipeline(steps=[('preprocessor', TextPreprocessor()),\n",
|
1731 |
+
" ('vectorizer', TfidfVectorizer()),\n",
|
1732 |
+
" ('classifier', RandomForestClassifier())])</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" ><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">TextPreprocessor</label><div class=\"sk-toggleable__content fitted\"><pre>TextPreprocessor()</pre></div> </div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-5\" type=\"checkbox\" ><label for=\"sk-estimator-id-5\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> TfidfVectorizer<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html\">?<span>Documentation for TfidfVectorizer</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>TfidfVectorizer()</pre></div> </div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-6\" type=\"checkbox\" ><label for=\"sk-estimator-id-6\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> RandomForestClassifier<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.ensemble.RandomForestClassifier.html\">?<span>Documentation for RandomForestClassifier</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>RandomForestClassifier()</pre></div> </div></div></div></div></div></div>"
|
1733 |
+
],
|
1734 |
+
"text/plain": [
|
1735 |
+
"Pipeline(steps=[('preprocessor', TextPreprocessor()),\n",
|
1736 |
+
" ('vectorizer', TfidfVectorizer()),\n",
|
1737 |
+
" ('classifier', RandomForestClassifier())])"
|
1738 |
+
]
|
1739 |
+
},
|
1740 |
+
"execution_count": 32,
|
1741 |
+
"metadata": {},
|
1742 |
+
"output_type": "execute_result"
|
1743 |
+
}
|
1744 |
+
],
|
1745 |
+
"source": [
|
1746 |
+
"# Train the model\n",
|
1747 |
+
"pipeline.fit(X_train, y_train)"
|
1748 |
+
]
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"cell_type": "code",
|
1752 |
+
"execution_count": 33,
|
1753 |
+
"metadata": {},
|
1754 |
+
"outputs": [],
|
1755 |
+
"source": [
|
1756 |
+
"# Make predictions\n",
|
1757 |
+
"y_pred = pipeline.predict(X_test)"
|
1758 |
+
]
|
1759 |
+
},
|
1760 |
+
{
|
1761 |
+
"cell_type": "code",
|
1762 |
+
"execution_count": 34,
|
1763 |
+
"metadata": {},
|
1764 |
+
"outputs": [
|
1765 |
+
{
|
1766 |
+
"name": "stdout",
|
1767 |
+
"output_type": "stream",
|
1768 |
+
"text": [
|
1769 |
+
"Accuracy: 0.6797950080668121\n",
|
1770 |
+
"Classification Report:\n",
|
1771 |
+
" precision recall f1-score support\n",
|
1772 |
+
"\n",
|
1773 |
+
" 0 0.89 0.49 0.63 768\n",
|
1774 |
+
" 1 0.98 0.36 0.52 556\n",
|
1775 |
+
" 2 0.54 0.82 0.65 3081\n",
|
1776 |
+
" 3 0.79 0.95 0.86 3269\n",
|
1777 |
+
" 4 1.00 0.26 0.41 215\n",
|
1778 |
+
" 5 0.97 0.21 0.34 517\n",
|
1779 |
+
" 6 0.69 0.38 0.49 2131\n",
|
1780 |
+
"\n",
|
1781 |
+
" accuracy 0.68 10537\n",
|
1782 |
+
" macro avg 0.84 0.49 0.56 10537\n",
|
1783 |
+
"weighted avg 0.73 0.68 0.66 10537\n",
|
1784 |
+
"\n"
|
1785 |
+
]
|
1786 |
+
}
|
1787 |
+
],
|
1788 |
+
"source": [
|
1789 |
+
"# Evaluate the model\n",
|
1790 |
+
"accuracy = accuracy_score(y_test, y_pred)\n",
|
1791 |
+
"report = classification_report(y_test, y_pred)\n",
|
1792 |
+
"\n",
|
1793 |
+
"print(f'Accuracy: {accuracy}')\n",
|
1794 |
+
"print('Classification Report:')\n",
|
1795 |
+
"print(report)"
|
1796 |
+
]
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"cell_type": "code",
|
1800 |
+
"execution_count": null,
|
1801 |
+
"metadata": {},
|
1802 |
+
"outputs": [],
|
1803 |
+
"source": []
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"cell_type": "code",
|
1807 |
+
"execution_count": null,
|
1808 |
+
"metadata": {},
|
1809 |
+
"outputs": [],
|
1810 |
+
"source": []
|
1811 |
+
},
|
1812 |
+
{
|
1813 |
+
"cell_type": "code",
|
1814 |
+
"execution_count": 10,
|
1815 |
+
"metadata": {},
|
1816 |
+
"outputs": [
|
1817 |
+
{
|
1818 |
+
"name": "stdout",
|
1819 |
+
"output_type": "stream",
|
1820 |
+
"text": [
|
1821 |
+
"{'text': 'A lot of times if I am feeling sad, I immediately think of how others will respond to it. Or I am looking for comfort.. my father is a homophobic, racist, sexist piece of shit and my mother takes care of everything in the house. I hate my dad, when he started saying things like \"there is only two genders\" and \"you are looking for attention\" and making things seem like I was in the wrong no matter how much I was right, I realized how much of a shitbag he was and really felt desperate. I felt desperate for love and so I am confusing that with wanting attention.. am I in the wrong for doing this? Am I depressed or wanting attention?', 'prediction': 'Depression'}\n"
|
1822 |
+
]
|
1823 |
+
}
|
1824 |
+
],
|
1825 |
+
"source": [
|
1826 |
+
"import requests\n",
|
1827 |
+
"text = 'A lot of times if I am feeling sad, I immediately think of how others will respond to it. Or I am looking for comfort.. my father is a homophobic, racist, sexist piece of shit and my mother takes care of everything in the house. I hate my dad, when he started saying things like \"there is only two genders\" and \"you are looking for attention\" and making things seem like I was in the wrong no matter how much I was right, I realized how much of a shitbag he was and really felt desperate. I felt desperate for love and so I am confusing that with wanting attention.. am I in the wrong for doing this? Am I depressed or wanting attention?'\n",
|
1828 |
+
"url = \"http://127.0.0.1:8000/predict_sentiment\"\n",
|
1829 |
+
"data = {\"text\": text}\n",
|
1830 |
+
"response = requests.post(url, json=data)\n",
|
1831 |
+
"\n",
|
1832 |
+
"print(response.json())\n"
|
1833 |
+
]
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"cell_type": "code",
|
1837 |
+
"execution_count": null,
|
1838 |
+
"metadata": {},
|
1839 |
+
"outputs": [],
|
1840 |
+
"source": []
|
1841 |
+
},
|
1842 |
+
{
|
1843 |
+
"cell_type": "code",
|
1844 |
+
"execution_count": null,
|
1845 |
+
"metadata": {},
|
1846 |
+
"outputs": [],
|
1847 |
+
"source": []
|
1848 |
+
}
|
1849 |
+
],
|
1850 |
+
"metadata": {
|
1851 |
+
"kernelspec": {
|
1852 |
+
"display_name": "Python 3",
|
1853 |
+
"language": "python",
|
1854 |
+
"name": "python3"
|
1855 |
+
},
|
1856 |
+
"language_info": {
|
1857 |
+
"codemirror_mode": {
|
1858 |
+
"name": "ipython",
|
1859 |
+
"version": 3
|
1860 |
+
},
|
1861 |
+
"file_extension": ".py",
|
1862 |
+
"mimetype": "text/x-python",
|
1863 |
+
"name": "python",
|
1864 |
+
"nbconvert_exporter": "python",
|
1865 |
+
"pygments_lexer": "ipython3",
|
1866 |
+
"version": "3.10.14"
|
1867 |
+
}
|
1868 |
+
},
|
1869 |
+
"nbformat": 4,
|
1870 |
+
"nbformat_minor": 2
|
1871 |
+
}
|
fastapi_app/__init__.py
ADDED
File without changes
|
fastapi_app/main.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
+
from fastapi.responses import HTMLResponse
|
3 |
+
from fastapi.staticfiles import StaticFiles
|
4 |
+
from pydantic import BaseModel
|
5 |
+
import uvicorn
|
6 |
+
import os, sys
|
7 |
+
|
8 |
+
# Add the root directory to sys.path
|
9 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
10 |
+
from model_pipeline.model_predict import load_model, predict as initial_predict
|
11 |
+
from llama_pipeline.llama_predict import predict as llama_predict
|
12 |
+
from db_connection import insert_db
|
13 |
+
from logging_config.logger_config import get_logger
|
14 |
+
|
15 |
+
# Initialize the FastAPI app
|
16 |
+
app = FastAPI()
|
17 |
+
|
18 |
+
# Initialize the logger
|
19 |
+
logger = get_logger(__name__)
|
20 |
+
|
21 |
+
# Load the latest model at startup
|
22 |
+
model = load_model()
|
23 |
+
|
24 |
+
# Mount the static files directory
|
25 |
+
app.mount("/static", StaticFiles(directory="fastapi_app/static"), name="static")
|
26 |
+
|
27 |
+
@app.get("/", response_class=HTMLResponse)
|
28 |
+
def read_root():
|
29 |
+
with open("fastapi_app/static/index.html") as f:
|
30 |
+
html_content = f.read()
|
31 |
+
return HTMLResponse(content=html_content, status_code=200)
|
32 |
+
|
33 |
+
@app.get("/health")
|
34 |
+
def health_check():
|
35 |
+
logger.info("Health check endpoint accessed.")
|
36 |
+
return {"status": "ok"}
|
37 |
+
|
38 |
+
class TextInput(BaseModel):
|
39 |
+
text: str
|
40 |
+
|
41 |
+
class PredictionInput(BaseModel):
|
42 |
+
text: str
|
43 |
+
initial_prediction: str
|
44 |
+
llama_category: str
|
45 |
+
llama_explanation: str
|
46 |
+
user_rating: int
|
47 |
+
|
48 |
+
@app.post("/predict_sentiment")
|
49 |
+
def predict_sentiment(input_data: TextInput):
|
50 |
+
logger.info(f"Prediction request received with text: {input_data.text}")
|
51 |
+
|
52 |
+
# Initial model prediction
|
53 |
+
initial_prediction = initial_predict(input_data.text, model = model)
|
54 |
+
|
55 |
+
# LLaMA 3 prediction
|
56 |
+
llama_prediction = llama_predict(input_data.text)
|
57 |
+
|
58 |
+
# Prepare response
|
59 |
+
response = {
|
60 |
+
"text": input_data.text,
|
61 |
+
"initial_prediction": initial_prediction,
|
62 |
+
"llama_category": llama_prediction['Category'],
|
63 |
+
"llama_explanation": llama_prediction['Explanation']
|
64 |
+
}
|
65 |
+
|
66 |
+
logger.info(f"Prediction response: {response}")
|
67 |
+
return response
|
68 |
+
|
69 |
+
@app.post("/submit_interaction")
|
70 |
+
def submit_interaction(data: PredictionInput):
|
71 |
+
logger.info(f"Received interaction data: {data}")
|
72 |
+
logger.info(f"Received text: {data.text}")
|
73 |
+
logger.info(f"Received initial_prediction: {data.initial_prediction}")
|
74 |
+
logger.info(f"Received llama_category: {data.llama_category}")
|
75 |
+
logger.info(f"Received llama_explanation: {data.llama_explanation}")
|
76 |
+
logger.info(f"Received user_rating: {data.user_rating}")
|
77 |
+
|
78 |
+
interaction_data = {
|
79 |
+
"Input_text": data.text,
|
80 |
+
"Model_prediction": data.initial_prediction,
|
81 |
+
"Llama_3_Prediction": data.llama_category,
|
82 |
+
"Llama_3_Explanation": data.llama_explanation,
|
83 |
+
"User Rating": data.user_rating,
|
84 |
+
}
|
85 |
+
|
86 |
+
response = insert_db(interaction_data)
|
87 |
+
logger.info(f"Database response: {response}")
|
88 |
+
return {"status": "success", "response": response}
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
fastapi_app/static/index.html
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Sentiment Analysis for Mental Health</title>
|
7 |
+
<link rel="stylesheet" href="/static/style.css">
|
8 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/animate.css/4.1.1/animate.min.css">
|
9 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css">
|
10 |
+
</head>
|
11 |
+
<body>
|
12 |
+
<div class="container animate__animated animate__fadeIn">
|
13 |
+
<h1>Sentiment Analysis for Mental Health</h1>
|
14 |
+
<p>This application uses a machine learning model to analyze the sentiment of text data related to mental health. It helps in understanding the sentiment expressed in user-generated content, such as social media posts or survey responses.</p>
|
15 |
+
<p>Enter a sentence below to predict its sentiment as Normal, Depression, Suicidal, Anxiety, Stress, Bi-Polar, or Personality Disorder.</p>
|
16 |
+
|
17 |
+
<textarea id="textInput" rows="4" placeholder="Enter your text here..." class="animate__animated animate__fadeInLeft"></textarea>
|
18 |
+
<button onclick="predictSentiment()" class="animate__animated animate__fadeInRight">Predict Sentiment</button>
|
19 |
+
|
20 |
+
<div id="results" class="animate__animated animate__fadeInUp">
|
21 |
+
<h2>Results:</h2>
|
22 |
+
<p><strong>Initial Model Prediction:</strong> <span id="initialPrediction"></span></p>
|
23 |
+
<p><strong>LLaMA 3 Category:</strong> <span id="llamaCategory"></span></p>
|
24 |
+
<p><strong>LLaMA 3 Explanation:</strong> <span id="llamaExplanation"></span></p>
|
25 |
+
|
26 |
+
<h2>Rate the Accuracy of the Prediction:</h2>
|
27 |
+
<div class="rating animate__animated animate__fadeIn">
|
28 |
+
<i class="fas fa-star" onclick="rate(1)"></i>
|
29 |
+
<i class="fas fa-star" onclick="rate(2)"></i>
|
30 |
+
<i class="fas fa-star" onclick="rate(3)"></i>
|
31 |
+
<i class="fas fa-star" onclick="rate(4)"></i>
|
32 |
+
<i class="fas fa-star" onclick="rate(5)"></i>
|
33 |
+
</div>
|
34 |
+
<input type="hidden" id="userRating" value="0">
|
35 |
+
</div>
|
36 |
+
|
37 |
+
<button onclick="submitInteraction()" class="animate__animated animate__fadeIn">Submit Rating</button>
|
38 |
+
</div>
|
39 |
+
<script src="/static/script.js"></script>
|
40 |
+
</body>
|
41 |
+
</html>
|
fastapi_app/static/script.js
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
async function predictSentiment() {
|
2 |
+
const textInput = document.getElementById("textInput").value;
|
3 |
+
const response = await fetch("/predict_sentiment", {
|
4 |
+
method: "POST",
|
5 |
+
headers: {
|
6 |
+
"Content-Type": "application/json"
|
7 |
+
},
|
8 |
+
body: JSON.stringify({ text: textInput })
|
9 |
+
});
|
10 |
+
const result = await response.json();
|
11 |
+
document.getElementById("initialPrediction").innerText = result.initial_prediction;
|
12 |
+
document.getElementById("llamaCategory").innerText = result.llama_category;
|
13 |
+
document.getElementById("llamaExplanation").innerText = result.llama_explanation;
|
14 |
+
}
|
15 |
+
|
16 |
+
function rate(rating) {
|
17 |
+
document.getElementById("userRating").value = rating;
|
18 |
+
const stars = document.querySelectorAll(".rating .fa-star");
|
19 |
+
stars.forEach((star, index) => {
|
20 |
+
star.classList.toggle("selected", index < rating);
|
21 |
+
});
|
22 |
+
}
|
23 |
+
|
24 |
+
async function submitInteraction() {
|
25 |
+
const textInput = document.getElementById("textInput").value;
|
26 |
+
const initialPrediction = document.getElementById("initialPrediction").innerText;
|
27 |
+
const llamaCategory = document.getElementById("llamaCategory").innerText;
|
28 |
+
const llamaExplanation = document.getElementById("llamaExplanation").innerText;
|
29 |
+
const userRating = document.getElementById("userRating").value;
|
30 |
+
|
31 |
+
const data = {
|
32 |
+
text: textInput,
|
33 |
+
initial_prediction: initialPrediction,
|
34 |
+
llama_category: llamaCategory,
|
35 |
+
llama_explanation: llamaExplanation,
|
36 |
+
user_rating: parseInt(userRating),
|
37 |
+
};
|
38 |
+
|
39 |
+
// display the data in the console
|
40 |
+
console.log(data);
|
41 |
+
|
42 |
+
const response = await fetch("/submit_interaction", {
|
43 |
+
method: "POST",
|
44 |
+
headers: {
|
45 |
+
"Content-Type": "application/json"
|
46 |
+
},
|
47 |
+
body: JSON.stringify(data)
|
48 |
+
});
|
49 |
+
|
50 |
+
const result = await response.json();
|
51 |
+
alert("Thank you for your feedback!");
|
52 |
+
}
|
53 |
+
|
fastapi_app/static/style.css
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
body {
|
2 |
+
font-family: Arial, sans-serif;
|
3 |
+
background: linear-gradient(to right, #6a11cb, #2575fc);
|
4 |
+
display: flex;
|
5 |
+
justify-content: center;
|
6 |
+
align-items: center;
|
7 |
+
height: 100vh;
|
8 |
+
margin: 0;
|
9 |
+
color: #fff;
|
10 |
+
text-align: center;
|
11 |
+
}
|
12 |
+
|
13 |
+
.container {
|
14 |
+
background-color: rgba(255, 255, 255, 0.1);
|
15 |
+
padding: 20px;
|
16 |
+
border-radius: 10px;
|
17 |
+
box-shadow: 0 0 20px rgba(0, 0, 0, 0.2);
|
18 |
+
width: 80%;
|
19 |
+
max-width: 600px;
|
20 |
+
}
|
21 |
+
|
22 |
+
h1 {
|
23 |
+
color: #fff;
|
24 |
+
}
|
25 |
+
|
26 |
+
textarea {
|
27 |
+
width: 100%;
|
28 |
+
padding: 10px;
|
29 |
+
margin: 10px 0;
|
30 |
+
border-radius: 8px;
|
31 |
+
border: none;
|
32 |
+
outline: none;
|
33 |
+
background-color: rgba(255, 255, 255, 0.2);
|
34 |
+
color: #fff;
|
35 |
+
}
|
36 |
+
|
37 |
+
button {
|
38 |
+
padding: 10px 20px;
|
39 |
+
background-color: #28a745;
|
40 |
+
color: white;
|
41 |
+
border: none;
|
42 |
+
border-radius: 8px;
|
43 |
+
cursor: pointer;
|
44 |
+
transition: background-color 0.3s ease;
|
45 |
+
margin-top: 20px;
|
46 |
+
}
|
47 |
+
|
48 |
+
button:hover {
|
49 |
+
background-color: #218838;
|
50 |
+
}
|
51 |
+
|
52 |
+
#results {
|
53 |
+
margin-top: 20px;
|
54 |
+
text-align: left;
|
55 |
+
color: #fff;
|
56 |
+
}
|
57 |
+
|
58 |
+
.rating {
|
59 |
+
display: flex;
|
60 |
+
justify-content: center;
|
61 |
+
align-items: center;
|
62 |
+
font-size: 2em;
|
63 |
+
}
|
64 |
+
|
65 |
+
.rating .fa-star {
|
66 |
+
cursor: pointer;
|
67 |
+
color: #ccc;
|
68 |
+
transition: color 0.3s;
|
69 |
+
}
|
70 |
+
|
71 |
+
.rating .fa-star:hover,
|
72 |
+
.rating .fa-star:hover ~ .fa-star {
|
73 |
+
color: #ffd700;
|
74 |
+
}
|
75 |
+
|
76 |
+
.rating .fa-star.selected {
|
77 |
+
color: #ffd700;
|
78 |
+
}
|
image.png
ADDED
![]() |
llama_pipeline/__pycache__/llama_predict.cpython-310.pyc
ADDED
Binary file (3.93 kB). View file
|
|
llama_pipeline/llama_predict.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
import os, sys
|
3 |
+
from langchain_groq import ChatGroq
|
4 |
+
from langchain_core.output_parsers import StrOutputParser, JsonOutputParser
|
5 |
+
from langchain_core.prompts.prompt import PromptTemplate
|
6 |
+
|
7 |
+
# Add the root directory to sys.path
|
8 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
9 |
+
from logging_config.logger_config import get_logger
|
10 |
+
|
11 |
+
# Get the logger
|
12 |
+
logger = get_logger(__name__)
|
13 |
+
|
14 |
+
# environment variables
|
15 |
+
load_dotenv()
|
16 |
+
groq_api_key=os.getenv('GROQ_API_KEY')
|
17 |
+
|
18 |
+
# initialize the ChatGroq object
|
19 |
+
llm=ChatGroq(groq_api_key=groq_api_key,
|
20 |
+
model_name="Llama3-8b-8192")
|
21 |
+
|
22 |
+
# Sentiment Classification
|
23 |
+
def sentiment_analyzer(input_text: str) -> str:
|
24 |
+
template = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
25 |
+
You are a highly specialized AI trained in clinical psychology and mental health assessment. Your task is to analyze textual input and categorize it into one of the following mental health conditions:
|
26 |
+
- Normal
|
27 |
+
- Depression
|
28 |
+
- Suicidal
|
29 |
+
- Anxiety
|
30 |
+
- Stress
|
31 |
+
- Bi-Polar
|
32 |
+
- Personality Disorder
|
33 |
+
|
34 |
+
Your analysis should be based on clinical symptoms and diagnostic criteria commonly used in mental health practice. Here are some detailed examples:
|
35 |
+
|
36 |
+
Example 1:
|
37 |
+
Text: "I feel an overwhelming sense of sadness and hopelessness. I have lost interest in activities I once enjoyed and find it hard to get out of bed."
|
38 |
+
Category: Depression
|
39 |
+
|
40 |
+
Example 2:
|
41 |
+
Text: "I constantly worry about various aspects of my life. My heart races, and I experience physical symptoms like sweating and trembling even when there is no apparent danger."
|
42 |
+
Category: Anxiety
|
43 |
+
|
44 |
+
Example 3:
|
45 |
+
Text: "I have thoughts about ending my life. I feel that there is no other way to escape my pain, and I often think about how I might end it."
|
46 |
+
Category: Suicidal
|
47 |
+
|
48 |
+
Example 4:
|
49 |
+
Text: "I feel extremely stressed and overwhelmed by my responsibilities. I find it difficult to relax, and I often experience headaches and tension."
|
50 |
+
Category: Stress
|
51 |
+
|
52 |
+
Example 5:
|
53 |
+
Text: "I go through periods of extreme happiness and high energy, followed by episodes of deep depression and low energy. These mood swings affect my daily functioning."
|
54 |
+
Category: Bi-Polar
|
55 |
+
|
56 |
+
Example 6:
|
57 |
+
Text: "I have trouble maintaining stable relationships and often experience intense emotional reactions. My self-image frequently changes, and I engage in impulsive behaviors."
|
58 |
+
Category: Personality Disorder
|
59 |
+
|
60 |
+
Example 7:
|
61 |
+
Text: "I feel generally content and am able to manage my daily activities without significant distress or impairment."
|
62 |
+
Category: Normal
|
63 |
+
|
64 |
+
|
65 |
+
Return as out the Category and a brief explanation of your decision in a json format.
|
66 |
+
|
67 |
+
Now, analyze the following text and determine the most appropriate category from the list above:
|
68 |
+
<|eot_id|><|start_header_id|>user<|end_header_id|>
|
69 |
+
Human: {input_text}
|
70 |
+
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
71 |
+
AI Assistant:"""
|
72 |
+
|
73 |
+
sentiment_prompt = PromptTemplate(input_variables=["input_text"], template=template)
|
74 |
+
initiator_router = sentiment_prompt | llm | JsonOutputParser()
|
75 |
+
output = initiator_router.invoke({"input_text":input_text})
|
76 |
+
return output
|
77 |
+
|
78 |
+
|
79 |
+
# making predictions
|
80 |
+
def predict(text: str) -> str:
|
81 |
+
try:
|
82 |
+
logger.info("Making prediction...")
|
83 |
+
prediction = sentiment_analyzer(text)
|
84 |
+
logger.info(f"Prediction: {prediction}")
|
85 |
+
return prediction
|
86 |
+
except Exception as e:
|
87 |
+
logger.error(f"An error occurred while making the prediction: {e}")
|
88 |
+
return str('The prediction could not be made due to an error., Please try again later.')
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
# Example text input
|
92 |
+
example_text = "I feel incredibly anxious about everything and can't stop worrying"
|
93 |
+
|
94 |
+
# Make a prediction
|
95 |
+
prediction = predict(example_text)
|
96 |
+
print(prediction)
|
logging_config/__init__.py
ADDED
File without changes
|
logging_config/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (149 Bytes). View file
|
|
logging_config/__pycache__/logger_config.cpython-310.pyc
ADDED
Binary file (913 Bytes). View file
|
|
logging_config/logger_config.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
|
4 |
+
# Ensure the log directory exists
|
5 |
+
log_directory = 'logs'
|
6 |
+
os.makedirs(log_directory, exist_ok=True)
|
7 |
+
|
8 |
+
# Define the logging configuration
|
9 |
+
logging.basicConfig(
|
10 |
+
filename=os.path.join(log_directory, 'app.log'),
|
11 |
+
level=logging.INFO,
|
12 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
13 |
+
datefmt='%Y-%m-%d %H:%M:%S'
|
14 |
+
)
|
15 |
+
|
16 |
+
# Get a custom logger
|
17 |
+
def get_logger(name):
|
18 |
+
logger = logging.getLogger(name)
|
19 |
+
logger.setLevel(logging.DEBUG)
|
20 |
+
|
21 |
+
if not logger.hasHandlers():
|
22 |
+
# Create a file handler
|
23 |
+
file_handler = logging.FileHandler('logs/app.log')
|
24 |
+
file_handler.setLevel(logging.DEBUG)
|
25 |
+
|
26 |
+
# Create a console handler
|
27 |
+
console_handler = logging.StreamHandler()
|
28 |
+
console_handler.setLevel(logging.DEBUG)
|
29 |
+
|
30 |
+
# Create a logging format
|
31 |
+
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
32 |
+
file_handler.setFormatter(formatter)
|
33 |
+
console_handler.setFormatter(formatter)
|
34 |
+
|
35 |
+
# Add the handlers to the logger
|
36 |
+
logger.addHandler(file_handler)
|
37 |
+
logger.addHandler(console_handler)
|
38 |
+
|
39 |
+
return logger
|
logs/app.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model_pipeline/__init__.py
ADDED
File without changes
|
model_pipeline/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (149 Bytes). View file
|
|
model_pipeline/__pycache__/model_predict.cpython-310.pyc
ADDED
Binary file (2.98 kB). View file
|
|
model_pipeline/model_predict.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import re
|
4 |
+
import string
|
5 |
+
import joblib
|
6 |
+
import pandas as pd
|
7 |
+
import numpy as np
|
8 |
+
from nltk.corpus import stopwords
|
9 |
+
from nltk.stem import WordNetLemmatizer
|
10 |
+
import nltk
|
11 |
+
from glob import glob
|
12 |
+
|
13 |
+
# Add the root directory to sys.path
|
14 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
15 |
+
from logging_config.logger_config import get_logger
|
16 |
+
|
17 |
+
# Download necessary NLTK data files
|
18 |
+
nltk.download('stopwords')
|
19 |
+
nltk.download('wordnet')
|
20 |
+
|
21 |
+
# Get the logger
|
22 |
+
logger = get_logger(__name__)
|
23 |
+
|
24 |
+
# Custom Preprocessor Class
|
25 |
+
class TextPreprocessor:
|
26 |
+
def __init__(self):
|
27 |
+
self.stop_words = set(stopwords.words('english'))
|
28 |
+
self.lemmatizer = WordNetLemmatizer()
|
29 |
+
logger.info("TextPreprocessor initialized.")
|
30 |
+
|
31 |
+
def preprocess_text(self, text):
|
32 |
+
logger.info(f"Original text: {text}")
|
33 |
+
# Lowercase the text
|
34 |
+
text = text.lower()
|
35 |
+
logger.info(f"Lowercased text: {text}")
|
36 |
+
|
37 |
+
# Remove punctuation
|
38 |
+
text = re.sub(f'[{re.escape(string.punctuation)}]', '', text)
|
39 |
+
logger.info(f"Text after punctuation removal: {text}")
|
40 |
+
|
41 |
+
# Remove numbers
|
42 |
+
text = re.sub(r'\d+', '', text)
|
43 |
+
logger.info(f"Text after number removal: {text}")
|
44 |
+
|
45 |
+
# Tokenize the text
|
46 |
+
words = text.split()
|
47 |
+
logger.info(f"Tokenized text: {words}")
|
48 |
+
|
49 |
+
# Remove stopwords and apply lemmatization
|
50 |
+
words = [self.lemmatizer.lemmatize(word) for word in words if word not in self.stop_words]
|
51 |
+
logger.info(f"Text after stopword removal and lemmatization: {words}")
|
52 |
+
|
53 |
+
# Join words back into a single string
|
54 |
+
cleaned_text = ' '.join(words)
|
55 |
+
logger.info(f"Cleaned text: {cleaned_text}")
|
56 |
+
|
57 |
+
return cleaned_text
|
58 |
+
|
59 |
+
def get_latest_model_path(models_dir='./models'):
|
60 |
+
model_files = glob(os.path.join(models_dir, 'model_v*.joblib'))
|
61 |
+
if not model_files:
|
62 |
+
logger.error("No model files found in the models directory.")
|
63 |
+
raise FileNotFoundError("No model files found in the models directory.")
|
64 |
+
|
65 |
+
latest_model_file = max(model_files, key=os.path.getctime)
|
66 |
+
logger.info(f"Latest model file found: {latest_model_file}")
|
67 |
+
return latest_model_file
|
68 |
+
|
69 |
+
def load_model():
|
70 |
+
model_path = get_latest_model_path()
|
71 |
+
logger.info(f"Loading model from {model_path}")
|
72 |
+
return joblib.load(model_path)
|
73 |
+
|
74 |
+
def predict(text, model):
|
75 |
+
# Initialize the text preprocessor
|
76 |
+
preprocessor = TextPreprocessor()
|
77 |
+
|
78 |
+
# Preprocess the input text
|
79 |
+
logger.info("Preprocessing input text...")
|
80 |
+
cleaned_text = preprocessor.preprocess_text(text)
|
81 |
+
|
82 |
+
# Make a prediction
|
83 |
+
logger.info("Making prediction...")
|
84 |
+
prediction = model.predict([cleaned_text])
|
85 |
+
|
86 |
+
logger.info(f"Prediction: {prediction}")
|
87 |
+
return prediction[0]
|
88 |
+
|
89 |
+
if __name__ == "__main__":
|
90 |
+
# Example text input
|
91 |
+
example_text = "I love programming in Python."
|
92 |
+
|
93 |
+
# Load the latest model
|
94 |
+
model = load_model()
|
95 |
+
|
96 |
+
# Make a prediction
|
97 |
+
prediction = predict(example_text, model)
|
98 |
+
|
99 |
+
# Print the prediction
|
100 |
+
print(f"Prediction: {prediction}")
|
model_pipeline/model_trainer.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import pandas as pd
|
4 |
+
import joblib
|
5 |
+
from datetime import datetime
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
+
from sklearn.linear_model import LogisticRegression
|
9 |
+
from sklearn.pipeline import Pipeline
|
10 |
+
from sklearn.metrics import classification_report, accuracy_score
|
11 |
+
|
12 |
+
# Add the root directory to sys.path
|
13 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
14 |
+
|
15 |
+
from logging_config.logger_config import get_logger
|
16 |
+
|
17 |
+
# Get the logger
|
18 |
+
logger = get_logger(__name__)
|
19 |
+
|
20 |
+
def load_data(file_path):
|
21 |
+
logger.info(f"Loading data from {file_path}")
|
22 |
+
return pd.read_csv(file_path)
|
23 |
+
|
24 |
+
def train_model(data):
|
25 |
+
logger.info("Starting model training...")
|
26 |
+
# check for missing values
|
27 |
+
if data.isnull().sum().sum() > 0:
|
28 |
+
logger.error("Missing values found in the dataset.")
|
29 |
+
# Drop missing values
|
30 |
+
data.dropna(inplace=True)
|
31 |
+
logger.info("Missing values dropped.")
|
32 |
+
# checking the shape of the data
|
33 |
+
logger.info(f"Data shape: {data.shape}")
|
34 |
+
|
35 |
+
# Split data into features and labels
|
36 |
+
X = data['cleaned_statement']
|
37 |
+
y = data['status'] # Assuming 'sentiment' is the target column
|
38 |
+
|
39 |
+
# Split data into training and test sets
|
40 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
41 |
+
|
42 |
+
# Create a pipeline with TF-IDF Vectorizer and Logistic Regression
|
43 |
+
pipeline = Pipeline([
|
44 |
+
('tfidf', TfidfVectorizer()),
|
45 |
+
('clf', LogisticRegression())
|
46 |
+
])
|
47 |
+
|
48 |
+
# Train the pipeline
|
49 |
+
pipeline.fit(X_train, y_train)
|
50 |
+
logger.info("Model training completed.")
|
51 |
+
|
52 |
+
# Make predictions
|
53 |
+
y_pred = pipeline.predict(X_test)
|
54 |
+
|
55 |
+
# Evaluate the model
|
56 |
+
accuracy = accuracy_score(y_test, y_pred)
|
57 |
+
report = classification_report(y_test, y_pred)
|
58 |
+
|
59 |
+
logger.info(f"Accuracy: {accuracy}")
|
60 |
+
logger.info(f"Classification Report:\n{report}")
|
61 |
+
|
62 |
+
return pipeline, accuracy, report
|
63 |
+
|
64 |
+
def save_model(pipeline, version):
|
65 |
+
# Create the models directory if it doesn't exist
|
66 |
+
os.makedirs('./models', exist_ok=True)
|
67 |
+
|
68 |
+
# Save the pipeline with versioning
|
69 |
+
model_filename = f'model_v{version}.joblib'
|
70 |
+
model_path = os.path.join('models', model_filename)
|
71 |
+
joblib.dump(pipeline, model_path)
|
72 |
+
logger.info(f"Model saved as {model_path}")
|
73 |
+
|
74 |
+
if __name__ == "__main__":
|
75 |
+
# Path to the cleaned dataset
|
76 |
+
cleaned_data_path = os.path.join('./data', 'cleaned_data.csv')
|
77 |
+
|
78 |
+
# Load the data
|
79 |
+
data = load_data(cleaned_data_path)
|
80 |
+
|
81 |
+
# Train the model
|
82 |
+
pipeline, accuracy, report = train_model(data)
|
83 |
+
|
84 |
+
# Define the model version based on the current datetime
|
85 |
+
version = datetime.now().strftime("%Y%m%d%H%M%S")
|
86 |
+
|
87 |
+
# Save the model
|
88 |
+
save_model(pipeline, version)
|
89 |
+
|
90 |
+
# Print the results
|
91 |
+
print(f"Model version: {version}")
|
92 |
+
print(f"Accuracy: {accuracy}")
|
93 |
+
print(f"Classification Report:\n{report}")
|
models/model_v20240717014315.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ac9de0ec670007da30e6e8ef8433064f1f347e1e94ef861d4fdaa871cd310d5
|
3 |
+
size 5326113
|
new_experiement.ipynb
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from dotenv import load_dotenv\n",
|
10 |
+
"import os\n",
|
11 |
+
"from langchain_groq import ChatGroq\n",
|
12 |
+
"from langchain_core.output_parsers import StrOutputParser\n",
|
13 |
+
"from langchain_core.prompts.prompt import PromptTemplate"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 3,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"groq_api_key=os.getenv('GROQ_API_KEY')"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 4,
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"llm=ChatGroq(groq_api_key=groq_api_key,\n",
|
32 |
+
" model_name=\"Llama3-8b-8192\")"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": 7,
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [],
|
40 |
+
"source": [
|
41 |
+
"def sentiment_analyzer(input_text: str) -> list:\n",
|
42 |
+
" template = \"\"\"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
|
43 |
+
" You are a highly specialized AI trained in clinical psychology and mental health assessment. Your task is to analyze textual input and categorize it into one of the following mental health conditions:\n",
|
44 |
+
" - Normal\n",
|
45 |
+
" - Depression\n",
|
46 |
+
" - Suicidal\n",
|
47 |
+
" - Anxiety\n",
|
48 |
+
" - Stress\n",
|
49 |
+
" - Bi-Polar\n",
|
50 |
+
" - Personality Disorder\n",
|
51 |
+
"\n",
|
52 |
+
" Your analysis should be based on clinical symptoms and diagnostic criteria commonly used in mental health practice. Here are some detailed examples:\n",
|
53 |
+
"\n",
|
54 |
+
" Example 1:\n",
|
55 |
+
" Text: \"I feel an overwhelming sense of sadness and hopelessness. I have lost interest in activities I once enjoyed and find it hard to get out of bed.\"\n",
|
56 |
+
" Category: Depression\n",
|
57 |
+
"\n",
|
58 |
+
" Example 2:\n",
|
59 |
+
" Text: \"I constantly worry about various aspects of my life. My heart races, and I experience physical symptoms like sweating and trembling even when there is no apparent danger.\"\n",
|
60 |
+
" Category: Anxiety\n",
|
61 |
+
"\n",
|
62 |
+
" Example 3:\n",
|
63 |
+
" Text: \"I have thoughts about ending my life. I feel that there is no other way to escape my pain, and I often think about how I might end it.\"\n",
|
64 |
+
" Category: Suicidal\n",
|
65 |
+
"\n",
|
66 |
+
" Example 4:\n",
|
67 |
+
" Text: \"I feel extremely stressed and overwhelmed by my responsibilities. I find it difficult to relax, and I often experience headaches and tension.\"\n",
|
68 |
+
" Category: Stress\n",
|
69 |
+
"\n",
|
70 |
+
" Example 5:\n",
|
71 |
+
" Text: \"I go through periods of extreme happiness and high energy, followed by episodes of deep depression and low energy. These mood swings affect my daily functioning.\"\n",
|
72 |
+
" Category: Bi-Polar\n",
|
73 |
+
"\n",
|
74 |
+
" Example 6:\n",
|
75 |
+
" Text: \"I have trouble maintaining stable relationships and often experience intense emotional reactions. My self-image frequently changes, and I engage in impulsive behaviors.\"\n",
|
76 |
+
" Category: Personality Disorder\n",
|
77 |
+
"\n",
|
78 |
+
" Example 7:\n",
|
79 |
+
" Text: \"I feel generally content and am able to manage my daily activities without significant distress or impairment.\"\n",
|
80 |
+
" Category: Normal\n",
|
81 |
+
"\n",
|
82 |
+
" Now, analyze the following text and determine the most appropriate category from the list above, and return the Category and a brief explanation of your decision:\n",
|
83 |
+
" <|eot_id|><|start_header_id|>user<|end_header_id|>\n",
|
84 |
+
" Human: {input_text}\n",
|
85 |
+
" <|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
|
86 |
+
" AI Assistant:\"\"\"\n",
|
87 |
+
"\n",
|
88 |
+
" sentiment_prompt = PromptTemplate(input_variables=[\"input_text\"], template=template)\n",
|
89 |
+
" initiator_router = sentiment_prompt | llm | StrOutputParser()\n",
|
90 |
+
" output = initiator_router.invoke({\"input_text\":input_text})\n",
|
91 |
+
" return output\n"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"cell_type": "code",
|
96 |
+
"execution_count": 8,
|
97 |
+
"metadata": {},
|
98 |
+
"outputs": [
|
99 |
+
{
|
100 |
+
"name": "stdout",
|
101 |
+
"output_type": "stream",
|
102 |
+
"text": [
|
103 |
+
"Category: Anxiety\n",
|
104 |
+
"\n",
|
105 |
+
"Explanation: The text indicates that the person is experiencing excessive and persistent worry, which is a hallmark symptom of anxiety disorder. The phrase \"can't stop worrying\" suggests that the individual is unable to control their worries, which is a common feature of anxiety disorders. Additionally, the phrase \"anxious about everything\" implies that the person is experiencing a pervasive and excessive anxiety that is interfering with their daily life. While anxiety can be a normal response to stressful situations, the severity and pervasiveness described in the text suggest that it may be a clinical concern.\n"
|
106 |
+
]
|
107 |
+
}
|
108 |
+
],
|
109 |
+
"source": [
|
110 |
+
"sentiment = sentiment_analyzer(\"I feel incredibly anxious about everything and can't stop worrying\")\n",
|
111 |
+
"print(sentiment)"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 12,
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [
|
119 |
+
{
|
120 |
+
"name": "stdout",
|
121 |
+
"output_type": "stream",
|
122 |
+
"text": [
|
123 |
+
"Category: Anxiety\n",
|
124 |
+
"\n",
|
125 |
+
"My assessment is based on the following symptoms mentioned in the text:\n",
|
126 |
+
"\n",
|
127 |
+
"* \"Constantly worried\" - This suggests that the individual is experiencing excessive and persistent worry, which is a hallmark symptom of anxiety.\n",
|
128 |
+
"* \"Can't seem to find any peace\" - This implies a sense of perpetual unease and inability to relax, which is also characteristic of anxiety.\n",
|
129 |
+
"* \"Disturbed sleep\" - Sleep disturbances are a common symptom of anxiety, often caused by racing thoughts and difficulty relaxing.\n",
|
130 |
+
"* \"Overwhelmed by even the smallest tasks\" - This suggests that the individual is experiencing feelings of excessive anxiety and difficulty coping with everyday activities, which is another common symptom of anxiety.\n",
|
131 |
+
"\n",
|
132 |
+
"Overall, the text suggests that the individual is experiencing symptoms that are consistent with an anxiety disorder, such as generalized anxiety disorder or anxiety disorder not otherwise specified.\n"
|
133 |
+
]
|
134 |
+
}
|
135 |
+
],
|
136 |
+
"source": [
|
137 |
+
"sentiment = sentiment_analyzer(\"I feel like everything is falling apart around me. I'm constantly worried and can't seem to find any peace. My sleep is disturbed, and I often feel overwhelmed by even the smallest tasks.\")\n",
|
138 |
+
"print(sentiment)"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "markdown",
|
143 |
+
"metadata": {},
|
144 |
+
"source": [
|
145 |
+
"## Connecting to database"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": 13,
|
151 |
+
"metadata": {},
|
152 |
+
"outputs": [],
|
153 |
+
"source": [
|
154 |
+
"import os\n",
|
155 |
+
"from supabase import create_client, Client\n",
|
156 |
+
"\n",
|
157 |
+
"url: str = os.environ.get(\"SUPABASE_PROJECT_URL\")\n",
|
158 |
+
"key: str = os.environ.get(\"SUPABASE_API_KEY\")\n",
|
159 |
+
"supabase: Client = create_client(url, key)"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"execution_count": 17,
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [],
|
167 |
+
"source": [
|
168 |
+
"# signinh in with email and password\n",
|
169 |
+
"data = supabase.table(\"Interaction History\").select(\"*\").execute()"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"cell_type": "code",
|
174 |
+
"execution_count": 18,
|
175 |
+
"metadata": {},
|
176 |
+
"outputs": [
|
177 |
+
{
|
178 |
+
"data": {
|
179 |
+
"text/plain": [
|
180 |
+
"APIResponse[~_ReturnT](data=[], count=None)"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
"execution_count": 18,
|
184 |
+
"metadata": {},
|
185 |
+
"output_type": "execute_result"
|
186 |
+
}
|
187 |
+
],
|
188 |
+
"source": [
|
189 |
+
"data"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "code",
|
194 |
+
"execution_count": 20,
|
195 |
+
"metadata": {},
|
196 |
+
"outputs": [],
|
197 |
+
"source": [
|
198 |
+
"new_row = {\n",
|
199 |
+
" \"Input_text\" : \"I feel incredibly anxious about everything and can't stop worrying\",\n",
|
200 |
+
" \"Model_prediction\" : \"Anxiety\",\n",
|
201 |
+
" \"Llama_3_Prediction\" : \"Anxiety\",\n",
|
202 |
+
" \"Llama_3_Explanation\" : \"Anxiety\",\n",
|
203 |
+
" \"User Rating\" : 5,\n",
|
204 |
+
"}\n",
|
205 |
+
"\n",
|
206 |
+
"data = supabase.table(\"Interaction History\").insert(new_row).execute()\n",
|
207 |
+
"\n",
|
208 |
+
"# Assert we pulled real data.\n",
|
209 |
+
"assert len(data.data) > 0"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"cell_type": "code",
|
214 |
+
"execution_count": 21,
|
215 |
+
"metadata": {},
|
216 |
+
"outputs": [
|
217 |
+
{
|
218 |
+
"data": {
|
219 |
+
"text/plain": [
|
220 |
+
"APIResponse[~_ReturnT](data=[{'id': 2, 'Input_text': \"I feel incredibly anxious about everything and can't stop worrying\", 'Model_prediction': 'Anxiety', 'Llama_3_Prediction': 'Anxiety', 'User Rating': 5, 'Llama_3_Explanation': 'Anxiety'}], count=None)"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
"execution_count": 21,
|
224 |
+
"metadata": {},
|
225 |
+
"output_type": "execute_result"
|
226 |
+
}
|
227 |
+
],
|
228 |
+
"source": [
|
229 |
+
"data"
|
230 |
+
]
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"cell_type": "code",
|
234 |
+
"execution_count": null,
|
235 |
+
"metadata": {},
|
236 |
+
"outputs": [],
|
237 |
+
"source": []
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"execution_count": null,
|
242 |
+
"metadata": {},
|
243 |
+
"outputs": [],
|
244 |
+
"source": []
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"cell_type": "code",
|
248 |
+
"execution_count": null,
|
249 |
+
"metadata": {},
|
250 |
+
"outputs": [],
|
251 |
+
"source": []
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"execution_count": null,
|
256 |
+
"metadata": {},
|
257 |
+
"outputs": [],
|
258 |
+
"source": []
|
259 |
+
}
|
260 |
+
],
|
261 |
+
"metadata": {
|
262 |
+
"kernelspec": {
|
263 |
+
"display_name": "Python 3",
|
264 |
+
"language": "python",
|
265 |
+
"name": "python3"
|
266 |
+
},
|
267 |
+
"language_info": {
|
268 |
+
"codemirror_mode": {
|
269 |
+
"name": "ipython",
|
270 |
+
"version": 3
|
271 |
+
},
|
272 |
+
"file_extension": ".py",
|
273 |
+
"mimetype": "text/x-python",
|
274 |
+
"name": "python",
|
275 |
+
"nbconvert_exporter": "python",
|
276 |
+
"pygments_lexer": "ipython3",
|
277 |
+
"version": "3.10.14"
|
278 |
+
}
|
279 |
+
},
|
280 |
+
"nbformat": 4,
|
281 |
+
"nbformat_minor": 2
|
282 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.111.1
|
2 |
+
scikit-learn==1.4.2
|
3 |
+
pandas==2.2.2
|
4 |
+
uvicorn==0.30.1
|
5 |
+
notebook==7.2.1
|
6 |
+
nltk==3.8.1
|
7 |
+
langchain_community==0.2.7
|
8 |
+
langchain==0.2.9
|
9 |
+
langchain_groq==0.1.6
|
10 |
+
langchain_core==0.2.21
|
11 |
+
llama-parse==0.4.9
|
12 |
+
python-dotenv==1.0.1
|
13 |
+
groq==0.9.0
|
14 |
+
supabase==2.5.3
|
todo.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1. connect a database
|
2 |
+
2. save the data to a database
|
3 |
+
3. add llm api_prediction to the project using Groq and llama 3 8b
|
4 |
+
4. Update the output into two outputs, one for the model prediction, the other for llm prediction.
|
utils.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import re
|
4 |
+
import string
|
5 |
+
import nltk
|
6 |
+
from nltk.corpus import stopwords
|
7 |
+
from nltk.stem import PorterStemmer, WordNetLemmatizer
|
8 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
9 |
+
from sklearn.ensemble import RandomForestClassifier
|
10 |
+
from sklearn.base import BaseEstimator, TransformerMixin
|
11 |
+
from sklearn.pipeline import Pipeline
|
12 |
+
|
13 |
+
# Download necessary NLTK data files
|
14 |
+
nltk.download('stopwords')
|
15 |
+
nltk.download('wordnet')
|
16 |
+
|
17 |
+
# Custom transformer for text preprocessing
|
18 |
+
class TextPreprocessor(BaseEstimator, TransformerMixin):
|
19 |
+
def __init__(self):
|
20 |
+
self.stop_words = set(stopwords.words('english'))
|
21 |
+
self.lemmatizer = WordNetLemmatizer()
|
22 |
+
|
23 |
+
def preprocess_text(self, text):
|
24 |
+
# Lowercase the text
|
25 |
+
text = text.lower()
|
26 |
+
|
27 |
+
# Remove punctuation
|
28 |
+
text = re.sub(f'[{re.escape(string.punctuation)}]', '', text)
|
29 |
+
|
30 |
+
# Remove numbers
|
31 |
+
text = re.sub(r'\d+', '', text)
|
32 |
+
|
33 |
+
# Tokenize the text
|
34 |
+
words = text.split()
|
35 |
+
|
36 |
+
# Remove stopwords and apply lemmatization
|
37 |
+
words = [self.lemmatizer.lemmatize(word) for word in words if word not in self.stop_words]
|
38 |
+
|
39 |
+
# Join words back into a single string
|
40 |
+
cleaned_text = ' '.join(words)
|
41 |
+
|
42 |
+
return cleaned_text
|
43 |
+
|
44 |
+
def fit(self, X, y=None):
|
45 |
+
return self
|
46 |
+
|
47 |
+
def transform(self, X, y=None):
|
48 |
+
return [self.preprocess_text(text) for text in X]
|
49 |
+
|
50 |
+
|
51 |
+
# Model pipeline
|
52 |
+
pipeline = Pipeline([
|
53 |
+
('preprocessor', TextPreprocessor()),
|
54 |
+
('vectorizer', TfidfVectorizer()),
|
55 |
+
('classifier', RandomForestClassifier())
|
56 |
+
])
|
57 |
+
|