Timmyafolami commited on
Commit
b05b085
·
verified ·
1 Parent(s): 7e97ce7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -42
README.md CHANGED
@@ -1,42 +1,50 @@
1
- # Sentiment Analysis API
2
- ![alt text](image.png)
3
-
4
- This project provides a sentiment analysis API using FastAPI and a machine learning model trained on textual data.
5
-
6
- ## Features
7
-
8
- - Data ingestion and preprocessing
9
- - Model training and saving
10
- - FastAPI application for serving predictions
11
- - Dockerized for easy deployment
12
-
13
- ## Setup
14
-
15
- ### Prerequisites
16
-
17
- - Docker installed on your system
18
-
19
- ### Build and Run
20
-
21
- 1. Build the Docker image:
22
-
23
- ```bash
24
- docker build -t sentiment-analysis-api .
25
- ```
26
-
27
- 2. Run the Docker container:
28
-
29
- ```bash
30
- docker run -p 8000:8000 sentiment-analysis-api
31
- ```
32
-
33
- 3. Access the API:
34
-
35
- - Home: [http://localhost:8000](http://localhost:8000)
36
- - Health Check: [http://localhost:8000/health](http://localhost:8000/health)
37
- - Predict Sentiment: Use a POST request to [http://localhost:8000/predict_sentiment](http://localhost:8000/predict_sentiment) with a JSON body.
38
-
39
- ## Example cURL Command
40
-
41
- ```bash
42
- curl -X POST "http://localhost:8000/predict_sentiment" -H "Content-Type: application/json" -d '{"text": "I love programming in Python."}'
 
 
 
 
 
 
 
 
 
1
+ title: SAMH
2
+ emoji: 📚
3
+ colorFrom: indigo
4
+ colorTo: blue
5
+ sdk: docker
6
+ pinned: false
7
+ license: apache-2.0
8
+
9
+ # Sentiment Analysis API
10
+ ![alt text](image.png)
11
+
12
+ This project provides a sentiment analysis API using FastAPI and a machine learning model trained on textual data.
13
+
14
+ ## Features
15
+
16
+ - Data ingestion and preprocessing
17
+ - Model training and saving
18
+ - FastAPI application for serving predictions
19
+ - Dockerized for easy deployment
20
+
21
+ ## Setup
22
+
23
+ ### Prerequisites
24
+
25
+ - Docker installed on your system
26
+
27
+ ### Build and Run
28
+
29
+ 1. Build the Docker image:
30
+
31
+ ```bash
32
+ docker build -t sentiment-analysis-api .
33
+ ```
34
+
35
+ 2. Run the Docker container:
36
+
37
+ ```bash
38
+ docker run -p 8000:8000 sentiment-analysis-api
39
+ ```
40
+
41
+ 3. Access the API:
42
+
43
+ - Home: [http://localhost:8000](http://localhost:8000)
44
+ - Health Check: [http://localhost:8000/health](http://localhost:8000/health)
45
+ - Predict Sentiment: Use a POST request to [http://localhost:8000/predict_sentiment](http://localhost:8000/predict_sentiment) with a JSON body.
46
+
47
+ ## Example cURL Command
48
+
49
+ ```bash
50
+ curl -X POST "http://localhost:8000/predict_sentiment" -H "Content-Type: application/json" -d '{"text": "I love programming in Python."}'