import os import sys import pandas as pd import joblib from datetime import datetime from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.metrics import classification_report, accuracy_score # Add the root directory to sys.path sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from logging_config.logger_config import get_logger # Get the logger logger = get_logger(__name__) def load_data(file_path): logger.info(f"Loading data from {file_path}") return pd.read_csv(file_path) def train_model(data): logger.info("Starting model training...") # check for missing values if data.isnull().sum().sum() > 0: logger.error("Missing values found in the dataset.") # Drop missing values data.dropna(inplace=True) logger.info("Missing values dropped.") # checking the shape of the data logger.info(f"Data shape: {data.shape}") # Split data into features and labels X = data['cleaned_statement'] y = data['status'] # Assuming 'sentiment' is the target column # Split data into training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Create a pipeline with TF-IDF Vectorizer and Logistic Regression pipeline = Pipeline([ ('tfidf', TfidfVectorizer()), ('clf', LogisticRegression()) ]) # Train the pipeline pipeline.fit(X_train, y_train) logger.info("Model training completed.") # Make predictions y_pred = pipeline.predict(X_test) # Evaluate the model accuracy = accuracy_score(y_test, y_pred) report = classification_report(y_test, y_pred) logger.info(f"Accuracy: {accuracy}") logger.info(f"Classification Report:\n{report}") return pipeline, accuracy, report def save_model(pipeline, version): # Create the models directory if it doesn't exist os.makedirs('./models', exist_ok=True) # Save the pipeline with versioning model_filename = f'model_v{version}.joblib' model_path = os.path.join('models', model_filename) joblib.dump(pipeline, model_path) logger.info(f"Model saved as {model_path}") if __name__ == "__main__": # Path to the cleaned dataset cleaned_data_path = os.path.join('./data', 'cleaned_data.csv') # Load the data data = load_data(cleaned_data_path) # Train the model pipeline, accuracy, report = train_model(data) # Define the model version based on the current datetime version = datetime.now().strftime("%Y%m%d%H%M%S") # Save the model save_model(pipeline, version) # Print the results print(f"Model version: {version}") print(f"Accuracy: {accuracy}") print(f"Classification Report:\n{report}")