File size: 7,236 Bytes
ffee029 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import os
import cv2
import zipfile
import numpy as np
import streamlit as st
from io import BytesIO
from PIL import Image
from ultralytics import YOLO
from shapely.geometry import Polygon
import shapefile
import json
import math
from utils import create_shapefile_with_latlon
# Increase the limit for PIL's decompression bomb protection
Image.MAX_IMAGE_PIXELS = None
# Define paths
path_to_store_bounding_boxes = 'detect/'
path_to_save_shapefile = 'weed_detections.shp'
slice_folder = 'slices/'
shapefile_folder = 'shapes/'
# Ensure the output directories exist
os.makedirs(path_to_store_bounding_boxes, exist_ok=True)
os.makedirs(slice_folder, exist_ok=True)
os.makedirs(shapefile_folder, exist_ok=True)
# Loading a custom model
model = YOLO('new_yolov8_best.pt')
# Mapping of class labels to readable names (assuming 'weeds' is class 1)
class_names = ["citrus area", "trees", "weeds", "weeds and trees"]
# Streamlit UI
st.title("Weed Detection and Shapefile Creation")
# Input coordinates for image corners
st.sidebar.header("Image Coordinates")
top_left = st.sidebar.text_input("Top Left (lon, lat)", value="-48.8877415, -20.585013")
top_right = st.sidebar.text_input("Top Right (lon, lat)", value="-48.8819718, -20.585013")
bottom_right = st.sidebar.text_input("Bottom Right (lon, lat)", value="-48.8819718, -20.5968754")
bottom_left = st.sidebar.text_input("Bottom Left (lon, lat)", value="-48.8877415, -20.5968754")
# Convert input coordinates to tuples
image_coords = [
tuple(map(float, top_left.split(','))),
tuple(map(float, top_right.split(','))),
tuple(map(float, bottom_right.split(','))),
tuple(map(float, bottom_left.split(',')))
]
# Upload image
uploaded_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
def calculate_new_coordinates(original_coords, start_x, start_y, end_x, end_y, img_width, img_height):
lon_step = (original_coords[1][0] - original_coords[0][0]) / img_width
lat_step = (original_coords[0][1] - original_coords[3][1]) / img_height
new_top_left = (original_coords[0][0] + start_x * lon_step, original_coords[0][1] - start_y * lat_step)
new_top_right = (original_coords[0][0] + end_x * lon_step, original_coords[0][1] - start_y * lat_step)
new_bottom_right = (original_coords[0][0] + end_x * lon_step, original_coords[0][1] - end_y * lat_step)
new_bottom_left = (original_coords[0][0] + start_x * lon_step, original_coords[0][1] - end_y * lat_step)
return [new_top_left, new_top_right, new_bottom_right, new_bottom_left]
def slice_image_and_coordinates(image_path, original_coords, slice_width=3000, slice_height=3000, output_folder='slices'):
os.makedirs(output_folder, exist_ok=True)
img = Image.open(image_path)
img_width, img_height = img.size
slice_coords = {}
slice_id = 0
num_slices_x = math.ceil(img_width / slice_width)
num_slices_y = math.ceil(img_height / slice_height)
for i in range(num_slices_y):
for j in range(num_slices_x):
start_x = j * slice_width
end_x = min(start_x + slice_width, img_width)
start_y = i * slice_height
end_y = min(start_y + slice_height, img_height)
box = (start_x, start_y, end_x, end_y)
cut_img = img.crop(box)
slice_filename = f'slice_{slice_id}.png'
cut_img.save(os.path.join(output_folder, slice_filename))
new_coords = calculate_new_coordinates(original_coords, start_x, start_y, end_x, end_y, img_width, img_height)
slice_coords[slice_filename] = new_coords
slice_id += 1
with open(os.path.join(output_folder, 'coordinates.json'), 'w') as json_file:
json.dump(slice_coords, json_file, indent=4)
return slice_coords
def convert_pixel_to_latlon(x, y, image_width, image_height, image_coords):
top_left, top_right, bottom_right, bottom_left = image_coords
lon_top = top_left[0] + (top_right[0] - top_left[0]) * (x / image_width)
lon_bottom = bottom_left[0] + (bottom_right[0] - bottom_left[0]) * (x / image_width)
lat_left = top_left[1] + (bottom_left[1] - top_left[1]) * (y / image_height)
lat_right = top_right[1] + (bottom_right[1] - top_right[1]) * (y / image_height)
lon = lon_top + (lon_bottom - lon_top) * (y / image_height)
lat = lat_left + (lat_right - lat_left) * (x / image_width)
return lon, lat
if uploaded_image is not None:
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
temp_image_path = "temp_uploaded_image.png"
image = Image.open(uploaded_image)
image.save(temp_image_path)
# Slice the image and save slices with their coordinates
slice_coords = slice_image_and_coordinates(temp_image_path, image_coords, slice_width=3000, slice_height=3000, output_folder=slice_folder)
if st.button("Detect Weeds"):
all_weed_bboxes = []
for slice_filename, coords in slice_coords.items():
slice_path = os.path.join(slice_folder, slice_filename)
image = cv2.imread(slice_path)
image_height, image_width, _ = image.shape
results = model.predict(slice_path, imgsz=640, conf=0.2, iou=0.4)
results = results[0]
weed_bboxes = []
for i, box in enumerate(results.boxes):
tensor = box.xyxy[0]
x1 = int(tensor[0].item())
y1 = int(tensor[1].item())
x2 = int(tensor[2].item())
y2 = int(tensor[3].item())
conf = box.conf[0].item()
label = box.cls[0].item()
if class_names[int(label)] == "weeds":
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 255), 3)
weed_bboxes.append((x1, y1, x2, y2))
if weed_bboxes:
create_shapefile_with_latlon(weed_bboxes, (image_width, image_height), coords, f'shapes/{slice_filename.replace(".png", ".shp")}')
all_weed_bboxes.extend(weed_bboxes)
cv2.imwrite(os.path.join(path_to_store_bounding_boxes, slice_filename), image)
final_shapefile_path = path_to_save_shapefile
w = shapefile.Writer(final_shapefile_path)
w.field('id', 'C')
for slice_filename, coords in slice_coords.items():
shape_path = os.path.join(shapefile_folder, slice_filename.replace('.png', '.shp'))
if os.path.exists(shape_path):
r = shapefile.Reader(shape_path)
for shape_rec in r.iterShapeRecords():
w.shape(shape_rec.shape)
w.record(shape_rec.record[0])
w.close()
zip_buffer = BytesIO()
with zipfile.ZipFile(zip_buffer, 'w') as zip_file:
for filename in ['weed_detections.shp', 'weed_detections.shx', 'weed_detections.dbf']:
zip_file.write(filename, os.path.basename(filename))
zip_buffer.seek(0)
st.download_button(
label="Download Shapefile ZIP",
data=zip_buffer,
file_name="weed_detections.zip",
mime="application/zip"
)
st.success("Weed detection completed and shapefile created successfully!")
|