Timmyafolami commited on
Commit
952641a
·
verified ·
1 Parent(s): f87f0a9

Upload 4 files

Browse files
Files changed (4) hide show
  1. Weed_Detector.py +108 -0
  2. new_yolov8_best.pt +3 -0
  3. requirements.txt +145 -0
  4. utils.py +43 -0
Weed_Detector.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import zipfile
4
+ import numpy as np
5
+ import streamlit as st
6
+ from io import BytesIO
7
+ from PIL import Image
8
+ from ultralytics import YOLO
9
+ from utils import create_shapefile_with_latlon
10
+
11
+
12
+ # Define paths
13
+ path_to_store_bounding_boxes = 'detect/'
14
+ path_to_save_shapefile = 'weed_detections.shp'
15
+
16
+ # Ensure the output directories exist
17
+ os.makedirs(path_to_store_bounding_boxes, exist_ok=True)
18
+
19
+ # loading a custom model
20
+ model = YOLO('new_yolov8_best.pt')
21
+
22
+ # Mapping of class labels to readable names (assuming 'weeds' is class 1)
23
+ class_names = ["citrus area", "trees", "weeds", "weeds and trees" ]
24
+
25
+
26
+ # Streamlit UI
27
+ st.title("Weed Detection and Shapefile Creation")
28
+
29
+ # Input coordinates for image corners
30
+ st.sidebar.header("Image Coordinates")
31
+ top_left = st.sidebar.text_input("Top Left (lon, lat)", value="-48.8864783, -20.5906375")
32
+ top_right = st.sidebar.text_input("Top Right (lon, lat)", value="-48.8855653, -20.5906264")
33
+ bottom_right = st.sidebar.text_input("Bottom Right (lon, lat)", value="-48.8855534, -20.5914861")
34
+ bottom_left = st.sidebar.text_input("Bottom Left (lon, lat)", value="-48.8864664, -20.5914973")
35
+
36
+ # Convert input coordinates to tuples
37
+ image_coords = [
38
+ tuple(map(float, top_left.split(','))),
39
+ tuple(map(float, top_right.split(','))),
40
+ tuple(map(float, bottom_right.split(','))),
41
+ tuple(map(float, bottom_left.split(',')))
42
+ ]
43
+
44
+ # Upload image
45
+ uploaded_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
46
+
47
+ if uploaded_image is not None:
48
+ # Display uploaded image
49
+ st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
50
+ img = Image.open(uploaded_image)
51
+ img_array = np.array(img)
52
+ image_height, image_width, _ = img_array.shape
53
+ temp_image_path = "temp_uploaded_image.png"
54
+ image = Image.open(uploaded_image)
55
+ image.save(temp_image_path)
56
+
57
+ # Perform weed detection on button click
58
+ if st.button("Detect Weeds"):
59
+ # Perform model prediction
60
+ results = model.predict(temp_image_path, imgsz=640, conf=0.2, iou=0.4)
61
+ results = results[0]
62
+
63
+ weed_bboxes = []
64
+
65
+ for i, box in enumerate(results.boxes):
66
+ tensor = box.xyxy[0]
67
+ x1 = int(tensor[0].item())
68
+ y1 = int(tensor[1].item())
69
+ x2 = int(tensor[2].item())
70
+ y2 = int(tensor[3].item())
71
+ conf = box.conf[0].item() # Confidence score
72
+ label = box.cls[0].item() # Class label
73
+
74
+ # Debugging output to ensure boxes are detected
75
+ print(f"Box {i}: ({x1}, {y1}), ({x2}, {y2}), label: {label}, confidence: {conf}")
76
+
77
+ # Only process if the detected class is "weeds"
78
+ if class_names[int(label)] == "weeds":
79
+ print("weed detected")
80
+ # Draw bounding box on the image
81
+ cv2.rectangle(img_array, (x1, y1), (x2, y2), (255, 0, 255), 3)
82
+ # Save the bounding box coordinates
83
+ weed_bboxes.append((x1, y1, x2, y2))
84
+
85
+ # Save the image with bounding boxes
86
+ detected_image_path = os.path.join(path_to_store_bounding_boxes, "detected_image.png")
87
+ cv2.imwrite(detected_image_path, cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
88
+
89
+ # Display the image with bounding boxes
90
+ st.image(img_array, caption="Detected Weeds", use_column_width=True)
91
+
92
+ # Create shapefile with bounding boxes
93
+ create_shapefile_with_latlon(weed_bboxes, (image_width, image_height), image_coords, path_to_save_shapefile)
94
+
95
+ # Create ZIP file of the shapefile components
96
+ zip_buffer = BytesIO()
97
+ with zipfile.ZipFile(zip_buffer, 'w') as zip_file:
98
+ for filename in ['weed_detections.shp', 'weed_detections.shx', 'weed_detections.dbf']:
99
+ zip_file.write(filename, os.path.basename(filename))
100
+ zip_buffer.seek(0)
101
+
102
+ # Download ZIP file
103
+ st.download_button(
104
+ label="Download Shapefile ZIP",
105
+ data=zip_buffer,
106
+ file_name="weed_detections.zip",
107
+ mime="application/zip"
108
+ )
new_yolov8_best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2664fca042b1ead70a9dc27597052b1c137719ab8ae3a870c940bf16cdfc4c0e
3
+ size 22508569
requirements.txt ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ altair==5.3.0
2
+ anyio==4.4.0
3
+ argon2-cffi==23.1.0
4
+ argon2-cffi-bindings==21.2.0
5
+ arrow==1.3.0
6
+ asttokens==2.4.1
7
+ async-lru==2.0.4
8
+ attrs==23.2.0
9
+ Babel==2.15.0
10
+ beautifulsoup4==4.12.3
11
+ bleach==6.1.0
12
+ blinker==1.8.2
13
+ cachetools==5.3.3
14
+ certifi==2024.2.2
15
+ cffi==1.16.0
16
+ charset-normalizer==3.3.2
17
+ click==8.1.7
18
+ click-plugins==1.1.1
19
+ cligj==0.7.2
20
+ colorama==0.4.6
21
+ comm==0.2.2
22
+ contourpy==1.2.1
23
+ cycler==0.12.1
24
+ debugpy==1.8.1
25
+ decorator==5.1.1
26
+ defusedxml==0.7.1
27
+ exceptiongroup==1.2.1
28
+ executing==2.0.1
29
+ fastjsonschema==2.19.1
30
+ filelock==3.14.0
31
+ fiona==1.9.6
32
+ fonttools==4.52.3
33
+ fqdn==1.5.1
34
+ fsspec==2024.5.0
35
+ geopandas==0.14.4
36
+ gitdb==4.0.11
37
+ GitPython==3.1.43
38
+ h11==0.14.0
39
+ httpcore==1.0.5
40
+ httpx==0.27.0
41
+ idna==3.7
42
+ intel-openmp==2021.4.0
43
+ ipykernel==6.29.4
44
+ ipython==8.24.0
45
+ isoduration==20.11.0
46
+ jedi==0.19.1
47
+ Jinja2==3.1.4
48
+ json5==0.9.25
49
+ jsonpointer==2.4
50
+ jsonschema==4.22.0
51
+ jsonschema-specifications==2023.12.1
52
+ jupyter_client==8.6.2
53
+ jupyter_core==5.7.2
54
+ jupyter-events==0.10.0
55
+ jupyter-lsp==2.2.5
56
+ jupyter_server==2.14.0
57
+ jupyter_server_terminals==0.5.3
58
+ jupyterlab==4.2.1
59
+ jupyterlab_pygments==0.3.0
60
+ jupyterlab_server==2.27.2
61
+ kiwisolver==1.4.5
62
+ markdown-it-py==3.0.0
63
+ MarkupSafe==2.1.5
64
+ matplotlib==3.9.0
65
+ matplotlib-inline==0.1.7
66
+ mdurl==0.1.2
67
+ mistune==3.0.2
68
+ mkl==2021.4.0
69
+ mpmath==1.3.0
70
+ nbclient==0.10.0
71
+ nbconvert==7.16.4
72
+ nbformat==5.10.4
73
+ nest-asyncio==1.6.0
74
+ networkx==3.3
75
+ notebook==7.2.0
76
+ notebook_shim==0.2.4
77
+ numpy==1.26.4
78
+ opencv-python==4.9.0.80
79
+ overrides==7.7.0
80
+ packaging==24.0
81
+ pandas==2.2.2
82
+ pandocfilters==1.5.1
83
+ parso==0.8.4
84
+ pillow==10.3.0
85
+ pip==24.0
86
+ platformdirs==4.2.2
87
+ prometheus_client==0.20.0
88
+ prompt_toolkit==3.0.44
89
+ protobuf==4.25.3
90
+ psutil==5.9.8
91
+ pure-eval==0.2.2
92
+ py-cpuinfo==9.0.0
93
+ pyarrow==16.1.0
94
+ pycparser==2.22
95
+ pydeck==0.9.1
96
+ Pygments==2.18.0
97
+ pyparsing==3.1.2
98
+ pyproj==3.6.1
99
+ pyshp==2.3.1
100
+ python-dateutil==2.9.0.post0
101
+ python-json-logger==2.0.7
102
+ PyYAML==6.0.1
103
+ pyzmq==26.0.3
104
+ referencing==0.35.1
105
+ requests==2.32.2
106
+ rfc3339-validator==0.1.4
107
+ rfc3986-validator==0.1.1
108
+ rich==13.7.1
109
+ rpds-py==0.18.1
110
+ scipy==1.13.1
111
+ seaborn==0.13.2
112
+ Send2Trash==1.8.3
113
+ setuptools==69.5.1
114
+ shapely==2.0.4
115
+ six==1.16.0
116
+ smmap==5.0.1
117
+ sniffio==1.3.1
118
+ soupsieve==2.5
119
+ stack-data==0.6.3
120
+ streamlit==1.35.0
121
+ sympy==1.12
122
+ tbb==2021.12.0
123
+ tenacity==8.3.0
124
+ terminado==0.18.1
125
+ thop==0.1.1.post2209072238
126
+ tinycss2==1.3.0
127
+ toml==0.10.2
128
+ tomli==2.0.1
129
+ toolz==0.12.1
130
+ torch==2.3.0
131
+ torchvision==0.18.0
132
+ tornado==6.4
133
+ tqdm==4.66.4
134
+ traitlets==5.14.3
135
+ types-python-dateutil==2.9.0.20240316
136
+ typing_extensions==4.12.0
137
+ tzdata==2024.1
138
+ ultralytics==8.2.23
139
+ uri-template==1.3.0
140
+ urllib3==2.2.1
141
+ watchdog==4.0.1
142
+ wcwidth==0.2.13
143
+ webcolors==1.13
144
+ webencodings==0.5.1
145
+ websocket-client==1.8.0
utils.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import zipfile
4
+ import shapefile
5
+ import numpy as np
6
+ from io import BytesIO
7
+ from shapely.geometry import Polygon
8
+ import matplotlib.pyplot as plt
9
+ from PIL import Image
10
+
11
+
12
+ def convert_pixel_to_latlon(x, y, image_width, image_height, image_coords):
13
+ top_left, top_right, bottom_right, bottom_left = image_coords
14
+
15
+ lon_top = top_left[0] + (top_right[0] - top_left[0]) * (x / image_width)
16
+ lon_bottom = bottom_left[0] + (bottom_right[0] - bottom_left[0]) * (x / image_width)
17
+ lat_left = top_left[1] + (bottom_left[1] - top_left[1]) * (y / image_height)
18
+ lat_right = top_right[1] + (bottom_right[1] - top_right[1]) * (y / image_height)
19
+
20
+ lon = lon_top + (lon_bottom - lon_top) * (y / image_height)
21
+ lat = lat_left + (lat_right - lat_left) * (x / image_width)
22
+
23
+ return lon, lat
24
+
25
+ # Function to create a shapefile with image dimensions and bounding boxes
26
+ def create_shapefile_with_latlon(bboxes, image_shape, image_coords, shapefile_path):
27
+ w = shapefile.Writer(shapefile_path)
28
+ w.field('id', 'C')
29
+
30
+ img_width, img_height = image_shape
31
+
32
+ # Add bounding boxes for weeds
33
+ for idx, (x1, y1, x2, y2) in enumerate(bboxes):
34
+ top_left = convert_pixel_to_latlon(x1, y1, img_width, img_height, image_coords)
35
+ top_right = convert_pixel_to_latlon(x2, y1, img_width, img_height, image_coords)
36
+ bottom_left = convert_pixel_to_latlon(x1, y2, img_width, img_height, image_coords)
37
+ bottom_right = convert_pixel_to_latlon(x2, y2, img_width, img_height, image_coords)
38
+
39
+ poly = Polygon([top_left, top_right, bottom_right, bottom_left, top_left])
40
+ w.poly([poly.exterior.coords])
41
+ w.record(f'weed_{idx}')
42
+
43
+ w.close()