""" A model worker executes the model. """ import argparse import asyncio import json import time import threading import uuid from fastapi import FastAPI, Request, BackgroundTasks from fastapi.responses import StreamingResponse import requests import torch import uvicorn from functools import partial from starvector.serve.constants import WORKER_HEART_BEAT_INTERVAL, CLIP_QUERY_LENGTH from starvector.serve.util import (build_logger, server_error_msg, pretty_print_semaphore) from starvector.serve.util import process_images, load_image_from_base64 from threading import Thread from transformers import TextIteratorStreamer from openai import OpenAI GB = 1 << 30 worker_id = str(uuid.uuid4())[:6] logger = build_logger("model_worker", f"model_worker_{worker_id}.log") global_counter = 0 model_semaphore = None def heart_beat_worker(controller): while True: time.sleep(WORKER_HEART_BEAT_INTERVAL) controller.send_heart_beat() class ModelWorker: def __init__(self, controller_addr, worker_addr, vllm_base_url, worker_id, no_register, model_name, openai_api_key): self.controller_addr = controller_addr self.worker_addr = worker_addr self.worker_id = worker_id self.vllm_base_url = vllm_base_url self.model_name = model_name self.openai_api_key = openai_api_key self.client = OpenAI( api_key=openai_api_key, base_url=vllm_base_url, ) if "text2svg" in self.model_name.lower(): self.task = "Text2SVG" elif "im2svg" in self.model_name.lower(): self.task = "Image2SVG" logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...") self.is_multimodal = 'starvector' in self.model_name.lower() if not no_register: self.register_to_controller() self.heart_beat_thread = threading.Thread( target=heart_beat_worker, args=(self,)) self.heart_beat_thread.start() def register_to_controller(self): logger.info("Register to controller") url = self.controller_addr + "/register_worker" data = { "worker_name": self.worker_addr, "check_heart_beat": True, "worker_status": self.get_status() } r = requests.post(url, json=data) assert r.status_code == 200 def send_heart_beat(self): logger.info(f"Send heart beat. Models: {[self.model_name]}. " f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " f"global_counter: {global_counter}") url = self.controller_addr + "/receive_heart_beat" while True: try: ret = requests.post(url, json={ "worker_name": self.worker_addr, "queue_length": self.get_queue_length()}, timeout=30) exist = ret.json()["exist"] break except requests.exceptions.RequestException as e: logger.error(f"heart beat error: {e}") time.sleep(5) if not exist: self.register_to_controller() def get_queue_length(self): if model_semaphore is None: return 0 else: return args.limit_model_concurrency - model_semaphore._value + (len( model_semaphore._waiters) if model_semaphore._waiters is not None else 0) def get_status(self): return { "model_names": [self.model_name], "speed": 1, "queue_length": self.get_queue_length(), } def generate_stream(self, params): num_beams = int(params.get("num_beams", 1)) temperature = float(params.get("temperature", 1.0)) len_penalty = float(params.get("len_penalty", 1.0)) top_p = float(params.get("top_p", 1.0)) max_context_length = 1000 # prompt = params["prompt"] prompt = " 0 else None if not image_base_64: yield json.dumps({"text": "Error: No image provided for Image2SVG task", "error_code": 1}).encode() + b"\0" return max_new_tokens = min(int(params.get("max_new_tokens", 256)), 8192) max_new_tokens = min(max_new_tokens, max_context_length - CLIP_QUERY_LENGTH) # Use the chat completions endpoint vllm_endpoint = f"{self.vllm_base_url}/v1/chat/completions" # Use a model name that vLLM recognizes # The full path including the organization is important model_name_for_vllm = params['model'] # Format payload for the chat completions endpoint request_payload = { "model": model_name_for_vllm, "messages": [ { "role": "user", "content": [ {"type": "text", "text": ""}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base_64}"}} ] } ], "max_tokens": 7500, "temperature": temperature, "top_p": top_p, "stream": True } # Log the request for debugging logger.info(f"Request to vLLM: {vllm_endpoint}") logger.info(f"Using model: {model_name_for_vllm}") # Use requests instead of OpenAI client response = requests.post( vllm_endpoint, json=request_payload, stream=True, headers={"Content-Type": "application/json"} ) # Log the response status for debugging logger.info(f"Response status: {response.status_code}") if response.status_code != 200: try: error_detail = response.json() logger.error(f"Error from vLLM server: {error_detail}") except json.JSONDecodeError: logger.error(f"Error from vLLM server: {response.text}") yield json.dumps({"text": f"Error communicating with model server: {response.status_code}", "error_code": 1}).encode() + b"\0" return # Process the streaming response output_text = "" for line in response.iter_lines(): if line: # Skip the "data: " prefix if present if line.startswith(b"data: "): line = line[6:] if line.strip() == b"[DONE]": break try: data = json.loads(line) if "choices" in data and len(data["choices"]) > 0: delta = data["choices"][0].get("delta", {}) content = delta.get("content", "") if content: output_text += content yield json.dumps({"text": output_text, "error_code": 0}).encode() + b"\0" except json.JSONDecodeError: logger.error(f"Failed to parse line as JSON: {line}") continue # Send final output if not already sent if output_text: yield json.dumps({"text": output_text, "error_code": 0}).encode() + b"\0" elif self.task == "Text2SVG": # Implementation for Text2SVG task would go here yield json.dumps({"text": "Text2SVG task not implemented yet", "error_code": 1}).encode() + b"\0" return def generate_stream_gate(self, params): try: for x in self.generate_stream(params): yield x except ValueError as e: print("Caught ValueError:", e) ret = { "text": server_error_msg, "error_code": 1, } yield json.dumps(ret).encode() + b"\0" except torch.cuda.CudaError as e: print("Caught torch.cuda.CudaError:", e) ret = { "text": server_error_msg, "error_code": 1, } yield json.dumps(ret).encode() + b"\0" except Exception as e: print("Caught Unknown Error", e) ret = { "text": server_error_msg, "error_code": 1, } yield json.dumps(ret).encode() + b"\0" app = FastAPI() def release_model_semaphore(fn=None): model_semaphore.release() if fn is not None: fn() @app.post("/worker_generate_stream") async def generate_stream(request: Request): global model_semaphore, global_counter global_counter += 1 params = await request.json() if model_semaphore is None: model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) await model_semaphore.acquire() worker.send_heart_beat() generator = worker.generate_stream_gate(params) background_tasks = BackgroundTasks() background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat)) return StreamingResponse(generator, background=background_tasks) @app.post("/worker_get_status") async def get_status(request: Request): return worker.get_status() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--port", type=int, default=21002) parser.add_argument("--worker-address", type=str, default="http://localhost:21002") parser.add_argument("--controller-address", type=str, default="http://localhost:21001") parser.add_argument("--model-name", type=str) parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `starvector` is included in the model path.") parser.add_argument("--limit-model-concurrency", type=int, default=5) parser.add_argument("--stream-interval", type=int, default=1) parser.add_argument("--no-register", action="store_true") parser.add_argument("--openai-api-key", type=str, default="EMPTY") parser.add_argument("--vllm-base-url", type=str, default="http://localhost:8000") args = parser.parse_args() logger.info(f"args: {args}") if args.multi_modal: logger.warning("Multimodal mode is automatically detected with model name, please make sure `starvector` is included in the model path.") worker = ModelWorker(args.controller_address, args.worker_address, args.vllm_base_url, worker_id, args.no_register, args.model_name, args.openai_api_key, ) uvicorn.run(app, host=args.host, port=args.port, log_level="info")