Spaces:
Running
Running
<html lang="en"> | |
<head> | |
<meta charset="utf-8" /> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0" /> | |
<title>PyTorch × Transformers Journey</title> | |
<!-- Google Fonts --> | |
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;800&family=Fira+Code:wght@400;600&display=swap" rel="stylesheet" /> | |
<!-- Reveal.js core & dark theme base --> | |
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/reset.css" /> | |
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/reveal.css" /> | |
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/theme/black.css" id="theme" /> | |
<!-- Highlight.js --> | |
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/styles/github-dark.min.css" /> | |
<!-- Animations --> | |
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/animate.css@4/animate.min.css" /> | |
<style> | |
:root { | |
--accent-primary: #ee4c2c; /* PyTorch orange‑red */ | |
--accent-secondary: #ffb347; /* lighter highlight */ | |
--bg-gradient-start: #1b1b1b; | |
--bg-gradient-end: #242424; | |
} | |
html, body { font-family: 'Inter', sans-serif; } | |
.reveal .slides { | |
background: linear-gradient(135deg, var(--bg-gradient-start), var(--bg-gradient-end)); | |
} | |
.reveal h1, .reveal h2, .reveal h3 { color: var(--accent-primary); font-weight: 800; letter-spacing: -0.5px; } | |
.reveal pre code { font-family: 'Fira Code', monospace; font-size: 0.75em; } | |
.reveal section img, .reveal section svg { border-radius: 1rem; box-shadow: 0 8px 22px rgba(0,0,0,0.4); } | |
.fragment.highlight-current-blue.visible { color: var(--accent-secondary) ; } | |
/* slide-density patch */ | |
.reveal h1 { font-size: 2.6rem; line-height: 1.1; } | |
.reveal h2 { font-size: 1.9rem; line-height: 1.15; } | |
.reveal h3 { font-size: 1.4rem; line-height: 1.2; } | |
.reveal p, .reveal li { font-size: 1.7rem; line-height: 1.35; } | |
.reveal pre code { font-size: 0.67em; } | |
@media (max-width: 1024px) { .reveal h1{font-size:2.2rem;} .reveal h2{font-size:1.6rem;} } | |
.reveal table td, .reveal table th { font-size: 0.85rem; padding: 4px 8px; } | |
body::after { | |
content: ""; | |
position: fixed; | |
bottom: 3.5em; | |
left: 3.5em; | |
width: 270px; /* desired size */ | |
height: 117px; | |
background-image: url(assets/py2.png); | |
background-size: contain; | |
background-repeat: no-repeat; | |
z-index: 9999; | |
box-shadow: 5px 5px 10px #000; | |
pointer-events: none; | |
} | |
</style> | |
</head> | |
<body> | |
<div class="reveal"> | |
<div class="slides"> | |
<section> | |
<img src="assets/screenpage2.png" alt="Full slide image" | |
style=" | |
width:120%; | |
height:110%; | |
object-fit:cover; | |
margin-left:-2.5%; | |
margin-top:-2.5%; | |
" /> <!-- 1 · Opening --> | |
</section> | |
<section data-auto-animate> | |
<img src="assets/head_logo.svg" | |
alt="Logo" | |
style="width: 120px; margin-bottom: 1rem;" | |
class="animate__animated animate__fadeInDown" /> | |
<h1 class="animate__animated animate__fadeInDown">PyTorch × Transformers Journey</h1> | |
<h3 class="animate__animated animate__fadeInDown animate__delay-1s">Pythonicity, Autodiff & Modularity in Modern AI</h3> | |
<p class="animate__animated animate__fadeInUp animate__delay-2s">Pablo Montalvo‑Leroux · ML Engineer @ Hugging Face</p> | |
</section> | |
<section> | |
<h2>2016‑2018: Backprop & Birth Pangs</h2> | |
<p>The journey began with uncertainty: back in 2016, machine learning was far from standardized. Tools like Theano and CNTK were fading, and many of us—myself included—were jumping framework to framework. It was a time of raw experimentation.</p> | |
<ul> | |
<li>Frameworks were in flux; few stuck around.</li> | |
<li>MLPs evolved to RNNs and LSTMs.</li> | |
<li><strong>2017, Attention, then 2018: BERT</strong> arrives, blowing the roof off what's possible.</li> | |
</ul> | |
<p class="fragment">But reproducing results remained frustratingly difficult.</p> | |
</section> | |
<section> | |
<h2>Transformers × PyTorch: Reproducibility</h2> | |
<p>That all changed with <code>pytorch-pretrained-bert</code>, the predecessor to Transformers. Suddenly, the magic of BERT was available in an interface that made sense.</p> | |
<ul> | |
<li>No static graphs, just Python functions and PyTorch modules.</li> | |
<li>Readable, hackable code meant results could be shared, reproduced, improved.</li> | |
<li>This shifted the research community towards PyTorch.</li> | |
</ul> | |
</section> | |
<!-- 3 · Static vs Dynamic Graphs --> | |
<section> | |
<h2>Static vs Dynamic Graphs</h2> | |
<p>Static graphs require you to compile, wait, and cross fingers the bug reproduces.</p> | |
<p>Dynamic graphs mean you can drop <code>pdb.set_trace()</code> anywhere and continue iterating.</p> | |
<p>Nowadays <code>torch.compile</code> gives the best of both worlds: write dynamically, ship something ahead‑of‑time optimised.</p> | |
</section> | |
<!-- 4 · Dynamic Graphs Enabled Contribution --> | |
<section> | |
<h2>Dynamic Graphs Enabled Contribution</h2> | |
<ul> | |
<li>Developers debug at line‑rate — no cold‑start recompiles.</li> | |
<li>Pull‑requests remained reproducible overnight, which accelerated trust.</li> | |
<li>Static‑graph alternatives stalled and the community consolidated around PyTorch.</li> | |
</ul> | |
</section> | |
<section> | |
<h2>Clone the Paper Tonight → Tweak Tomorrow</h2> | |
<p>PyTorch lowered the barrier to implementation. Transformers removed the rest.</p> | |
<ul> | |
<li>2018: debugging BERT fine-tunes meant live tensor prints, not codegen restarts.</li> | |
<li>Community credibility grew because patches could be merged fast and verified easily.</li> | |
<li>Experimentation became a matter of hours, not weeks.</li> | |
</ul> | |
</section> | |
<!-- 6 · One Model · One File --> | |
<section> | |
<h2>“One Model · One File” — Why it Matters</h2> | |
<pre><code class="language-python" data-trim data-noescape> | |
# modeling_bert.py — single source of truth | |
class BertConfig(PretrainedConfig): | |
... | |
class BertSelfAttention(nn.Module): | |
... | |
class BertLayer(nn.Module): | |
... | |
class BertModel(PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.embeddings = BertEmbeddings(config) | |
self.encoder = nn.ModuleList( | |
[BertLayer(config) for _ in range(config.num_hidden_layers)] | |
) | |
self.init_weights() | |
</code></pre> | |
<ul> | |
<li>All layers, forward pass, and <code>from_pretrained()</code> logic live together.</li> | |
<li>No cross‑file inheritance maze — copy to Colab, hack, and run.</li> | |
<li>Reviewers diff one file; merge time dropped from days to hours.</li> | |
</ul> | |
</section> | |
<section> | |
<h2>Beyond Transformers: Ecosystem Reuse</h2> | |
<p>Other libraries depend on <code>transformers</code> as a model definition source. For example, <strong>TRL</strong> uses models from the Hub directly:</p> | |
<pre><code class="language-python" data-trim data-noescape> | |
from datasets import load_dataset | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from trl import DPOConfig, DPOTrainer | |
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") | |
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train") | |
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO") | |
trainer = DPOTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset, | |
processing_class=tokenizer | |
) | |
trainer.train() | |
</code></pre> | |
<p class="fragment">No hacks, no refactoring — just <code>from_pretrained()</code>. Thanks to PyTorch autodiff and robust model definitions.</p> | |
</section> | |
<!-- 8 · Paradigms come at a cost --> | |
<section> | |
<h2>Paradigms come at a cost</h2> | |
<ul> | |
<p>The library took off, scientific and engineering ML community benefitted from it</p> | |
<p>Torch adoption grew at the same time!</p> | |
<p>The Hugging Face Hub became the AI app reference,</p> | |
<p>In transformers, <strong> Maintenance</strong> becomes an issue: we have a lot of repeated code on purpose!</p> | |
<p class="fragment">...but python is never far :) </p> | |
</ul> | |
</section> | |
<!-- 8 · Back to Python: Mary Shelley Mode --> | |
<section> | |
<h2>Back to Python: Modular “Mary Shelley” Mode</h2> | |
<p>Compose new blocks via subclass & override.</p> | |
<pre><code class="language-python" data-trim> | |
class GlmMLP(Phi3MLP): | |
pass | |
class GlmAttention(LlamaAttention): | |
def __init__(self, config, layer_idx=None): | |
super().__init__(config, layer_idx) | |
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, | |
config.hidden_size, bias=False) | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | |
# Slightly different RoPE | |
… | |
class GlmForCausalLM(LlamaForCausalLM): | |
pass | |
</code></pre> | |
<p>AST expands → full modeling file, still hackable.</p> | |
</section> | |
<section> | |
<h2>Back to Python: It's alive!</h2> | |
<p>All the code becomes runnable and a self-contained model definition</p> | |
<pre><code class="language-python" data-trim> | |
class GlmMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) | |
self.activation_fn = ACT2FN[config.hidden_act] | |
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
up_states = self.gate_up_proj(hidden_states) | |
gate, up_states = up_states.chunk(2, dim=-1) | |
up_states = up_states * self.activation_fn(gate) | |
return self.down_proj(up_states) | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
def eager_attention_forward( | |
module: nn.Module, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
attention_mask: Optional[torch.Tensor], | |
scaling: float, | |
dropout: float = 0.0, | |
**kwargs, | |
): | |
key_states = repeat_kv(key, module.num_key_value_groups) | |
value_states = repeat_kv(value, module.num_key_value_groups) | |
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling | |
if attention_mask is not None: | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
attn_weights = attn_weights + causal_mask | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
return attn_output, attn_weights | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., 0::2] | |
x2 = x[..., 1::2] | |
return torch.stack((-x2, x1), dim=-1).flatten(-2) | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`, *optional*): | |
Deprecated and unused. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos.unsqueeze(unsqueeze_dim) | |
sin = sin.unsqueeze(unsqueeze_dim) | |
# Interleave them instead of usual shape | |
cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1) | |
sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1) | |
# Keep half or full tensor for later concatenation | |
rotary_dim = cos.shape[-1] | |
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:] | |
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:] | |
# Apply rotary embeddings on the first half or full tensor | |
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin) | |
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin) | |
# Concatenate back to full shape | |
q_embed = torch.cat([q_embed, q_pass], dim=-1) | |
k_embed = torch.cat([k_embed, k_pass], dim=-1) | |
return q_embed, k_embed | |
class GlmAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config: GlmConfig, layer_idx: Optional[int] = None): | |
super().__init__() | |
self.config = config | |
self.layer_idx = layer_idx | |
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) | |
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads | |
self.scaling = self.head_dim**-0.5 | |
self.attention_dropout = config.attention_dropout | |
self.is_causal = True | |
self.q_proj = nn.Linear( | |
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias | |
) | |
self.k_proj = nn.Linear( | |
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias | |
) | |
self.v_proj = nn.Linear( | |
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias | |
) | |
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
position_embeddings: Tuple[torch.Tensor, torch.Tensor], | |
attention_mask: Optional[torch.Tensor], | |
past_key_value: Optional[Cache] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs: Unpack[FlashAttentionKwargs], | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
input_shape = hidden_states.shape[:-1] | |
hidden_shape = (*input_shape, -1, self.head_dim) | |
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) | |
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) | |
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) | |
cos, sin = position_embeddings | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
if past_key_value is not None: | |
# sin and cos are specific to RoPE models; cache_position needed for the static cache | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
attention_interface: Callable = eager_attention_forward | |
if self.config._attn_implementation != "eager": | |
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): | |
logger.warning_once( | |
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " | |
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
) | |
else: | |
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] | |
attn_output, attn_weights = attention_interface( | |
self, | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
dropout=0.0 if not self.training else self.attention_dropout, | |
scaling=self.scaling, | |
**kwargs, | |
) | |
attn_output = attn_output.reshape(*input_shape, -1).contiguous() | |
attn_output = self.o_proj(attn_output) | |
return attn_output, attn_weights | |
@use_kernel_forward_from_hub("RMSNorm") | |
class GlmRMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
GlmRMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
def extra_repr(self): | |
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | |
class GlmRotaryEmbedding(nn.Module): | |
def __init__(self, config: GlmConfig, device=None): | |
super().__init__() | |
# BC: "rope_type" was originally "type" | |
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: | |
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) | |
else: | |
self.rope_type = "default" | |
self.max_seq_len_cached = config.max_position_embeddings | |
self.original_max_seq_len = config.max_position_embeddings | |
self.config = config | |
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] | |
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
self.original_inv_freq = self.inv_freq | |
</code></pre> | |
<p> We keep hackability while reconnecting with Python working paradigms.</p> | |
</section> | |
<!-- 9 · Logit Debugger --> | |
<section> | |
<h2>Logit Debugger: Trust but Verify</h2> | |
<ul> | |
<li>Hook every <code>nn.Module</code>; dump logits layer‑by‑layer</li> | |
<li>Spot ε‑level drifts (LayerNorm, FP16 underflow…)</li> | |
<li>JSON traces diffable in CI</li> | |
<img data-src="assets/visual_debugger.png" alt="Visual debugger" /> | |
</ul> | |
</section> | |
<!-- 10 · DTensor & TP API --> | |
<section> | |
<h2>DTensor & Tensor‑Parallel API</h2> | |
<p>Before, changing to Tensor Parallel meant changing the code.</p> | |
<pre><code class="language-python" data-trim data-noescape> | |
from transformers.modeling_utils import PreTrainedModel | |
from megatron.model import ColumnParallelLinear, RowParallelLinear | |
class MyTPModel(PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.q_proj = ColumnParallelLinear(config.hidden_size, config.hidden_size) | |
self.k_proj = ColumnParallelLinear(config.hidden_size, config.hidden_size) | |
self.v_proj = ColumnParallelLinear(config.hidden_size, config.hidden_size) | |
self.o_proj = RowParallelLinear(config.hidden_size, config.hidden_size) | |
</code></pre> | |
</section> | |
<!-- 11 · Zero‑Config Parallelism --> | |
<section> | |
<h2>Zero‑Config Tensor Parallelism</h2> | |
<p>The <code>tp_plan</code> JSON keeps model code pristine and declarative.</p> | |
<pre><code class="language-json" data-trim data-noescape>{ | |
"layer.*.self_attn.q_proj": "colwise", | |
"layer.*.self_attn.k_proj": "colwise", | |
"layer.*.self_attn.v_proj": "colwise", | |
"layer.*.self_attn.o_proj": "rowwise" | |
}</code></pre> | |
<p class="fragment">Translated to</p> | |
<pre><code class="language-python" data-trim data-noescape> | |
def translate_to_torch_parallel_style(style: str): | |
if style == "colwise": | |
return ColwiseParallel() | |
elif style == "rowwise": | |
return RowwiseParallel() | |
# … | |
</code></pre> | |
<p class="fragment">One JSON → 100 B param model on 8 GPUs. Change the plan, not the code.</p> | |
</section> | |
<!-- 12 · Cache Allocator --> | |
<section> | |
<h2>Improvements, Load faster & stronger: Cache Allocator</h2> | |
<p>0‑copy weight sharding, single cuda Malloc</p> | |
<p>Faster model loads, even for a 50-shards 100B model (when we were sprinting Llama4!)</p> | |
<img data-src="assets/fastload.png" alt="SurprisedLewis" /> | |
</section> | |
<!-- 15 · Why Python wins --> | |
<section> | |
<h2>Why Python Wins</h2> | |
<ul> | |
<li>Low entry barrier (although hard to master)</li> | |
<li>High‑level semantics express low‑level intent</li> | |
<li>Seamless C++/Rust extension points</li> | |
</ul> | |
</section> | |
<!-- 16 · Where Python can bite --> | |
<section> | |
<h2>Where Python can bite 🐍</h2> | |
<ul> | |
<li>Interpreter overhead on microkernels (token‑by‑token decode)</li> | |
<li>GIL can throttle async host‑side work</li> | |
<li>Easy to under‑optimise code fresh out of the lab</li> | |
</ul> | |
<p class="fragment">All of these can be mitigated: Triton, compiled custom ops, compile‑time fallback, <strong>custom kernels</strong></p> | |
</section> | |
<!-- 17 · Kernel Hub --> | |
<section> | |
<h2>Kernel Hub: Optimised Ops from the Community</h2> | |
<p>Kernel Hub lets any Python program <em>download and hot‑load</em> compiled CUDA/C++ kernels directly from the Hugging Face Hub at runtime.</p> | |
<ul> | |
<li><strong>Portable</strong> – kernels work from arbitrary paths outside <code>PYTHONPATH</code>.</li> | |
<li><strong>Unique</strong> – load multiple versions of the same op side‑by‑side in one process.</li> | |
<li><strong>Compatible</strong> – every kernel targets all recent PyTorch wheels (CUDA, ROCm, CPU) and C‑library ABIs.</li> | |
</ul> | |
<pre><code class="language-python" data-trim data-noescape> | |
import torch | |
from kernels import get_kernel | |
# Download optimised kernels from the Hugging Face Hub | |
activation = get_kernel("kernels-community/activation") | |
x = torch.randn(10, 10, dtype=torch.float16, device="cuda") | |
y = torch.empty_like(x) | |
activation.gelu_fast(y, x) | |
print(y) | |
</code></pre> | |
<p class="fragment">Same Transformer code — now with a <strong>3× faster</strong> GELU on A100s.</p> | |
</section> | |
<!-- 18 · API design lessons --> | |
<section> | |
<h2>API Design Lessons</h2> | |
<ul> | |
<li>Make easy things obvious, hard things possible</li> | |
<li>Paper‑to‑repo diff should be minimal</li> | |
<li>Research repo-to-stable architecture should be as fast as possible</li> | |
<li>Hide sharding, expose intent</li> | |
</ul> | |
<p>We tune radios without building RF amplifiers — ML should feel the same.</p> | |
<p class="fragment">..while enabling people who build the amplifiers.</p> | |
</section> | |
<!-- 14 · Rise of Multimodality --> | |
<section> | |
<h2>Rise of Multimodality</h2> | |
<pre><code class="language-python" data-trim data-noescape> | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen3-8B") | |
model = AutoModelForConditionalGeneration.from_pretrained("Qwen/Qwen3-8B") | |
</code></pre> | |
<p>Same API across text · vision · audio</p> | |
<p>More and more models, with specific processing - need to uniformize</p> | |
</section> | |
<section> | |
<h2>Rise of Multimodality: torch-powered processing</h2> | |
<p>Torch and torchvision ops have replaced np + PIL defaults in transformers</p> | |
<img data-src="assets/normalize_time_torch.webp" width="80%" height="600" alt="Fast load" /> | |
</section> | |
<!-- 19 · Model Growth by Modality --> | |
<section> | |
<h2>Model Growth by Modality</h2> | |
<iframe src="assets/model_growth.html" width="80%" height="600" style="border:none;"></iframe> | |
</section> | |
<!-- 20 · Takeaways --> | |
<section> | |
<h2>Takeaways & The Future</h2> | |
<ul> | |
<li style="display: flex; align-items: center; gap: 1rem;"> | |
<img src="assets/torchlogo.png" alt="PyTorch" style="height: 2rem;" /> | |
PyTorch & <code>transformers</code> grow symbiotically | |
<img src="assets/head_logo.svg" alt="Transformers" style="height: 2rem;" /> | |
</li> | |
<li>Pythonicity × pragmatism drive adoption</li> | |
<li>Open‑source models are shipping faster & bigger than ever</li> | |
<li class="fragment"> Let's go!</li> | |
</ul> | |
<p> | |
<a href="https://huggingface.co/transformers/contribute" target="_blank"> | |
hf.co/transformers/contribute | |
</a> | |
</p> | |
</section> | |
</div> | |
</div> | |
<!-- Reveal.js core --> | |
<script src="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/reveal.js"></script> | |
<script src="https://cdn.jsdelivr.net/npm/reveal.js@5/plugin/highlight/highlight.js"></script> | |
<script src="https://cdn.jsdelivr.net/npm/reveal.js@5/plugin/notes/notes.js"></script> | |
<!-- Plotly for interactive charts --> | |
<script src="https://cdn.plot.ly/plotly-2.31.1.min.js"></script> | |
<script> | |
Reveal.initialize({ | |
hash: true, | |
slideNumber: true, | |
transition: 'slide', | |
backgroundTransition: 'convex', | |
plugins: [ RevealHighlight, RevealNotes ] | |
}); | |
</script> | |
</body> | |
</html> | |