File size: 10,505 Bytes
79b25e5 968eba7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import gradio as gr # type: ignore
import pandas as pd
import re
import spacy # type: ignore
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import TfidfVectorizer
from sentence_transformers import SentenceTransformer, util # type: ignore
from transformers import pipeline, AutoTokenizer
import textstat # type: ignore
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
nlp = spacy.load("en_core_web_sm")
model = SentenceTransformer('all-MiniLM-L6-v2')
weights = {
"information_density": 0.2,
"unique_key_points": 0.8,
"strength_word_count": 0.002,
"weakness_word_count": 0.004,
"discussion_word_count": 0.01
}
THRESHOLDS = {
"normalized_length": (0.15, 0.25),
"unique_key_points": (3, 10),
"information_density": (0.01, 0.02),
"unique_insights_per_word": 0.002,
"optimization_score": 0.7,
"composite_score": 5,
"adjusted_argument_strength": 0.75
}
def chunk_text(text, max_length):
tokens = tokenizer(text, return_tensors="pt", truncation=False)["input_ids"].squeeze(0).tolist()
return [tokenizer.decode(tokens[i:i+max_length]) for i in range(0, len(tokens), max_length)]
def analyze_text(texts):
results = []
for text in texts:
chunks = chunk_text(text, max_length=200)
chunk_results = sentiment_analyzer(chunks)
overall_sentiment = {
"label": "POSITIVE" if sum(1 for res in chunk_results if res["label"] == "POSITIVE") >= len(chunk_results) / 2 else "NEGATIVE",
"score": sum(res["score"] for res in chunk_results) / len(chunk_results),
}
results.append(overall_sentiment)
return results
def word_count(text):
return len(text.split()) if isinstance(text, str) else 0
def count_citations(text):
doc = nlp(text)
return sum(1 for ent in doc.ents if ent.label_ in ['WORK_OF_ART', 'ORG', 'GPE'])
def calculate_unique_insights_per_word(text):
sentences = text.split('.')
tfidf = TfidfVectorizer().fit_transform(sentences)
similarities = cosine_similarity(tfidf)
avg_similarity = (similarities.sum() - len(sentences)) / (len(sentences)**2 - len(sentences))
return 1 - avg_similarity
def calculate_unique_key_points_and_density(texts):
unique_key_points = []
information_density = []
for text in texts:
if not isinstance(text, str) or text.strip() == "":
unique_key_points.append(0)
information_density.append(0)
continue
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
embeddings = model.encode(sentences)
n_clusters = max(1, len(sentences) // 5)
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
kmeans.fit(embeddings)
cluster_centers = kmeans.cluster_centers_
unique_points_count = len(cluster_centers)
word_count = len(text.split())
density = unique_points_count / word_count if word_count > 0 else 0
unique_key_points.append(unique_points_count)
information_density.append(density)
return unique_key_points, information_density
def segment_comments(comments):
if comments == "N/A":
return {"strengths": "", "weaknesses": "", "general_discussion": ""}
strengths = re.search(r"- Strengths:\n([\s\S]*?)(\n- Weaknesses:|\Z)", comments)
weaknesses = re.search(r"- Weaknesses:\n([\s\S]*?)(\n- General Discussion:|\Z)", comments)
general_discussion = re.search(r"- General Discussion:\n([\s\S]*?)\Z", comments)
return {
"strengths": strengths.group(1).strip() if strengths else "",
"weaknesses": weaknesses.group(1).strip() if weaknesses else "",
"general_discussion": general_discussion.group(1).strip() if general_discussion else ""
}
def preprocess(comment, abstract):
df = pd.DataFrame({"comments": [comment]})
abstracts = pd.DataFrame({"abstract": [abstract]})
segmented_reviews = df["comments"].apply(segment_comments)
df["strengths"] = segmented_reviews.apply(lambda x: x["strengths"])
df["weaknesses"] = segmented_reviews.apply(lambda x: x["weaknesses"])
df["general_discussion"] = segmented_reviews.apply(lambda x: x["general_discussion"])
comments_embeddings = model.encode(df['comments'].tolist(), convert_to_tensor=True)
abstract_embeddings = model.encode(abstracts["abstract"].tolist(), convert_to_tensor=True)
df['content_relevance'] = util.cos_sim(comments_embeddings, abstract_embeddings).diagonal()
df['evidence_support'] = df['comments'].apply(count_citations)
df['strengths'] = df['strengths'].fillna('').astype(str)
texts = df['strengths'].tolist()
results = analyze_text(texts)
df['strength_argument_score'] = [result['score'] for result in results]
df['weaknesses'] = df['weaknesses'].fillna('').astype(str)
texts = df['weaknesses'].tolist()
results = analyze_text(texts)
df['weakness_argument_score'] = [result['score'] for result in results]
df['argument_strength'] = (df['strength_argument_score'] + df['weakness_argument_score']) / 2
df['readability_index'] = df['comments'].apply(textstat.flesch_reading_ease)
df['sentence_complexity'] = df['comments'].apply(textstat.sentence_count)
df['technical_depth'] = df['readability_index'] / df['sentence_complexity']
df['total_word_count'] = df['comments'].apply(word_count)
df['strength_word_count'] = df['strengths'].apply(word_count)
df['weakness_word_count'] = df['weaknesses'].apply(word_count)
df['discussion_word_count'] = df['general_discussion'].apply(word_count)
average_length = df['total_word_count'].mean()
df['normalized_length'] = df['total_word_count'] / average_length
df["unique_key_points"], df["information_density"] = calculate_unique_key_points_and_density(df["comments"])
df['unique_insights_per_word'] = df['comments'].apply(calculate_unique_insights_per_word) / df['total_word_count']
return df
def calculate_composite_score(df):
df['composite_score'] = (
weights['information_density'] * df['information_density'] +
weights['unique_key_points'] * df['unique_key_points'] +
weights['strength_word_count'] * df['strength_word_count'] +
weights['weakness_word_count'] * df['weakness_word_count'] +
weights['discussion_word_count'] * df['discussion_word_count']
)
return df
def classify_review_quality(row):
if row['composite_score'] > 12:
return 'Excellent Review Quality'
elif row['composite_score'] < 3:
return 'Poor Review Quality'
else:
return 'Moderate Review Quality'
def determine_review_quality(df):
df['normalized_length'] = df['total_word_count'] / df['total_word_count'].max()
df['unique_insights_per_word'] = df['unique_key_points'] / df['normalized_length']
df['adjusted_argument_strength'] = df['argument_strength'] / (1 + df['sentence_complexity'])
df['review_quality'] = df.apply(classify_review_quality, axis=1)
return df
def heuristic_optimization(row):
suggestions = []
if row["strength_word_count"] > 100 and row["strength_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
suggestions.append("Summarize redundant strengths.")
elif row["strength_word_count"] < 50 and row["strength_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
suggestions.append("Add more impactful strengths.")
if row["weakness_word_count"] > 100 and row["weakness_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
suggestions.append("Remove repetitive criticisms.")
elif row["weakness_word_count"] < 50 and row["weakness_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
suggestions.append("Add specific, actionable weaknesses.")
if row["discussion_word_count"] < 100 and row["information_density"] < THRESHOLDS["information_density"][0]:
suggestions.append("Elaborate with new insights or examples.")
elif row["discussion_word_count"] > 300 and row["information_density"] > THRESHOLDS["information_density"][1]:
suggestions.append("Summarize key discussion points.")
if row["normalized_length"] < THRESHOLDS["normalized_length"][0]:
suggestions.append("Expand sections for better coverage.")
elif row["normalized_length"] > THRESHOLDS["normalized_length"][1]:
suggestions.append("Condense content to improve readability.")
if row["unique_key_points"] < THRESHOLDS["unique_key_points"][0]:
suggestions.append("Add more unique insights.")
elif row["unique_key_points"] > THRESHOLDS["unique_key_points"][1]:
suggestions.append("Streamline ideas for clarity.")
if row["composite_score"] < THRESHOLDS["composite_score"]:
suggestions.append("Enhance clarity, evidence, and argumentation.")
if row["review_quality"] == "Low":
suggestions.append("Significant revisions required.")
elif row["review_quality"] == "Moderate":
suggestions.append("Minor refinements recommended.")
return suggestions
def pipeline(comment, abstract):
df = preprocess(comment, abstract)
df = calculate_composite_score(df)
df = determine_review_quality(df)
df["optimization_suggestions"] = df.apply(heuristic_optimization, axis=1)
return df["review_quality"][0], " ".join(df["optimization_suggestions"][0])
with gr.Blocks() as demo:
gr.Markdown("# Dynaic Length Optimization of Peer Review")
with gr.Row():
comment = gr.Textbox(label="Peer Review Comments")
abstract = gr.Textbox(label="Paper Abstract")
review_quality = gr.Textbox(label="Predicted Review Quality")
suggestions = gr.Textbox(label="Suggestions")
comment.change(fn=pipeline, inputs=[comment, abstract], outputs=[review_quality, suggestions])
iface = gr.Interface(
fn=pipeline,
inputs=[gr.Textbox(label="Peer Review Comments"), gr.Textbox(label="Paper Abstract")],
outputs=[gr.Textbox(label="Predicted Review Quality"), gr.Textbox(label="Suggestions")],
title="# Dynamic Length Optimization of Peer Review",
description="A framework which dynamically provides suggestion to improve a peer review.",
)
if __name__ == "__main__":
iface.launch()
|