File size: 10,505 Bytes
79b25e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
968eba7
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import gradio as gr # type: ignore
import pandas as pd
import re
import spacy # type: ignore
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import TfidfVectorizer
from sentence_transformers import SentenceTransformer, util # type: ignore
from transformers import pipeline, AutoTokenizer
import textstat # type: ignore

sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")

nlp = spacy.load("en_core_web_sm")

model = SentenceTransformer('all-MiniLM-L6-v2')

weights = {
    "information_density": 0.2,  
    "unique_key_points": 0.8,   
    "strength_word_count": 0.002,  
    "weakness_word_count": 0.004, 
    "discussion_word_count": 0.01  
}

THRESHOLDS = {
    "normalized_length": (0.15, 0.25),
    "unique_key_points": (3, 10),
    "information_density": (0.01, 0.02),
    "unique_insights_per_word": 0.002,
    "optimization_score": 0.7,
    "composite_score": 5,
    "adjusted_argument_strength": 0.75
}

def chunk_text(text, max_length):
    tokens = tokenizer(text, return_tensors="pt", truncation=False)["input_ids"].squeeze(0).tolist()
    return [tokenizer.decode(tokens[i:i+max_length]) for i in range(0, len(tokens), max_length)]

def analyze_text(texts):
    results = []
    for text in texts:
        chunks = chunk_text(text, max_length=200)
        chunk_results = sentiment_analyzer(chunks)  
        overall_sentiment = {
            "label": "POSITIVE" if sum(1 for res in chunk_results if res["label"] == "POSITIVE") >= len(chunk_results) / 2 else "NEGATIVE",
            "score": sum(res["score"] for res in chunk_results) / len(chunk_results),
        }
        results.append(overall_sentiment)
    return results

def word_count(text):
    return len(text.split()) if isinstance(text, str) else 0

def count_citations(text):
    doc = nlp(text)
    return sum(1 for ent in doc.ents if ent.label_ in ['WORK_OF_ART', 'ORG', 'GPE'])

def calculate_unique_insights_per_word(text):
    sentences = text.split('.')  
    tfidf = TfidfVectorizer().fit_transform(sentences)
    similarities = cosine_similarity(tfidf)
    avg_similarity = (similarities.sum() - len(sentences)) / (len(sentences)**2 - len(sentences)) 
    return 1 - avg_similarity 

def calculate_unique_key_points_and_density(texts):
    unique_key_points = []
    information_density = []

    for text in texts:
        if not isinstance(text, str) or text.strip() == "":
            unique_key_points.append(0)
            information_density.append(0)
            continue

        doc = nlp(text)
        sentences = [sent.text for sent in doc.sents]

        embeddings = model.encode(sentences)

        n_clusters = max(1, len(sentences) // 5)  
        kmeans = KMeans(n_clusters=n_clusters, random_state=42)
        kmeans.fit(embeddings)

        cluster_centers = kmeans.cluster_centers_
        unique_points_count = len(cluster_centers)

        word_count = len(text.split())
        density = unique_points_count / word_count if word_count > 0 else 0

        unique_key_points.append(unique_points_count)
        information_density.append(density)

    return unique_key_points, information_density

def segment_comments(comments):
    if comments == "N/A":
        return {"strengths": "", "weaknesses": "", "general_discussion": ""}
    
    strengths = re.search(r"- Strengths:\n([\s\S]*?)(\n- Weaknesses:|\Z)", comments)
    weaknesses = re.search(r"- Weaknesses:\n([\s\S]*?)(\n- General Discussion:|\Z)", comments)
    general_discussion = re.search(r"- General Discussion:\n([\s\S]*?)\Z", comments)
    
    return {
        "strengths": strengths.group(1).strip() if strengths else "",
        "weaknesses": weaknesses.group(1).strip() if weaknesses else "",
        "general_discussion": general_discussion.group(1).strip() if general_discussion else ""
    }

def preprocess(comment, abstract):
    df = pd.DataFrame({"comments": [comment]})
    abstracts = pd.DataFrame({"abstract": [abstract]})

    segmented_reviews = df["comments"].apply(segment_comments)
    df["strengths"] = segmented_reviews.apply(lambda x: x["strengths"])
    df["weaknesses"] = segmented_reviews.apply(lambda x: x["weaknesses"])
    df["general_discussion"] = segmented_reviews.apply(lambda x: x["general_discussion"])

    comments_embeddings = model.encode(df['comments'].tolist(), convert_to_tensor=True)
    abstract_embeddings = model.encode(abstracts["abstract"].tolist(), convert_to_tensor=True) 
    df['content_relevance'] = util.cos_sim(comments_embeddings, abstract_embeddings).diagonal()

    df['evidence_support'] = df['comments'].apply(count_citations)

    df['strengths'] = df['strengths'].fillna('').astype(str)
    texts = df['strengths'].tolist()  
    results = analyze_text(texts)  
    df['strength_argument_score'] = [result['score'] for result in results]

    df['weaknesses'] = df['weaknesses'].fillna('').astype(str)
    texts = df['weaknesses'].tolist()  
    results = analyze_text(texts)  
    df['weakness_argument_score'] = [result['score'] for result in results]

    df['argument_strength'] = (df['strength_argument_score'] + df['weakness_argument_score']) / 2

    df['readability_index'] = df['comments'].apply(textstat.flesch_reading_ease)
    df['sentence_complexity'] = df['comments'].apply(textstat.sentence_count)
    df['technical_depth'] = df['readability_index'] / df['sentence_complexity']

    df['total_word_count'] = df['comments'].apply(word_count)
    df['strength_word_count'] = df['strengths'].apply(word_count)
    df['weakness_word_count'] = df['weaknesses'].apply(word_count)
    df['discussion_word_count'] = df['general_discussion'].apply(word_count)

    average_length = df['total_word_count'].mean()
    df['normalized_length'] = df['total_word_count'] / average_length
    df["unique_key_points"], df["information_density"] = calculate_unique_key_points_and_density(df["comments"])

    df['unique_insights_per_word'] = df['comments'].apply(calculate_unique_insights_per_word) / df['total_word_count']

    return df 

def calculate_composite_score(df):
    df['composite_score'] = (
        weights['information_density'] * df['information_density'] +
        weights['unique_key_points'] * df['unique_key_points'] +
        weights['strength_word_count'] * df['strength_word_count'] +
        weights['weakness_word_count'] * df['weakness_word_count'] +
        weights['discussion_word_count'] * df['discussion_word_count']
    )

    return df

def classify_review_quality(row):
    if row['composite_score'] > 12: 
        return 'Excellent Review Quality'
    elif row['composite_score'] < 3:  
        return 'Poor Review Quality'
    else:
        return 'Moderate Review Quality'

def determine_review_quality(df):

    df['normalized_length'] = df['total_word_count'] / df['total_word_count'].max()
    df['unique_insights_per_word'] = df['unique_key_points'] / df['normalized_length']
    df['adjusted_argument_strength'] = df['argument_strength'] / (1 + df['sentence_complexity'])

    df['review_quality'] = df.apply(classify_review_quality, axis=1)

    return df

def heuristic_optimization(row):
    suggestions = []

    if row["strength_word_count"] > 100 and row["strength_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
        suggestions.append("Summarize redundant strengths.")
    elif row["strength_word_count"] < 50 and row["strength_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
        suggestions.append("Add more impactful strengths.")

    if row["weakness_word_count"] > 100 and row["weakness_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
        suggestions.append("Remove repetitive criticisms.")
    elif row["weakness_word_count"] < 50 and row["weakness_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
        suggestions.append("Add specific, actionable weaknesses.")

    if row["discussion_word_count"] < 100 and row["information_density"] < THRESHOLDS["information_density"][0]:
        suggestions.append("Elaborate with new insights or examples.")
    elif row["discussion_word_count"] > 300 and row["information_density"] > THRESHOLDS["information_density"][1]:
        suggestions.append("Summarize key discussion points.")

    if row["normalized_length"] < THRESHOLDS["normalized_length"][0]:
        suggestions.append("Expand sections for better coverage.")
    elif row["normalized_length"] > THRESHOLDS["normalized_length"][1]:
        suggestions.append("Condense content to improve readability.")

    if row["unique_key_points"] < THRESHOLDS["unique_key_points"][0]:
        suggestions.append("Add more unique insights.")
    elif row["unique_key_points"] > THRESHOLDS["unique_key_points"][1]:
        suggestions.append("Streamline ideas for clarity.")

    if row["composite_score"] < THRESHOLDS["composite_score"]:
        suggestions.append("Enhance clarity, evidence, and argumentation.")

    if row["review_quality"] == "Low":
        suggestions.append("Significant revisions required.")
    elif row["review_quality"] == "Moderate":
        suggestions.append("Minor refinements recommended.")

    return suggestions

def pipeline(comment, abstract):
    df = preprocess(comment, abstract)
    df = calculate_composite_score(df)
    df = determine_review_quality(df)
    df["optimization_suggestions"] = df.apply(heuristic_optimization, axis=1)
    return df["review_quality"][0], " ".join(df["optimization_suggestions"][0])

with gr.Blocks() as demo:
    gr.Markdown("# Dynaic Length Optimization of Peer Review")
    with gr.Row():
        comment = gr.Textbox(label="Peer Review Comments")
        abstract = gr.Textbox(label="Paper Abstract")
        review_quality = gr.Textbox(label="Predicted Review Quality")
        suggestions = gr.Textbox(label="Suggestions")
    
    comment.change(fn=pipeline, inputs=[comment, abstract], outputs=[review_quality, suggestions])

iface = gr.Interface(
    fn=pipeline,
    inputs=[gr.Textbox(label="Peer Review Comments"), gr.Textbox(label="Paper Abstract")],
    outputs=[gr.Textbox(label="Predicted Review Quality"), gr.Textbox(label="Suggestions")],
    title="# Dynamic Length Optimization of Peer Review",
    description="A framework which dynamically provides suggestion to improve a peer review.",
)

if __name__ == "__main__":
    iface.launch()