File size: 13,625 Bytes
c399026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bae2e1
 
 
c399026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import torch.cuda

import gradio as gr
import mdtex2html
import tempfile
from PIL import Image
import scipy

from llama.m2ugen import M2UGen
import llama
import numpy as np
import os
import torch
import torchaudio
import torchvision.transforms as transforms
import av
import subprocess
import librosa

args = {"model": "./ckpts/M2UGen/checkpoint.pth", "llama_type": "7B", "llama_dir": "./ckpts/LLaMA-2",
        "mert_path": "m-a-p/MERT-v1-330M", "vit_path": "google/vit-base-patch16-224", "vivit_path": "google/vivit-b-16x2-kinetics400",
        "music_decoder": "musicgen", "music_decoder_path": "facebook/musicgen-medium"}

generated_audio_files = []

llama_type = args.llama_type
llama_ckpt_dir = os.path.join(args.llama_dir, llama_type)
llama_tokenzier_path = args.llama_dir
model = M2UGen(llama_ckpt_dir, llama_tokenzier_path, args, knn=False, stage=None, load_llama=False)

print("Loading Model Checkpoint")
checkpoint = torch.load(args.model, map_location='cpu')

new_ckpt = {}
for key, value in checkpoint['model'].items():
    if "generation_model" in key:
        continue
    key = key.replace("module.", "")
    new_ckpt[key] = value

load_result = model.load_state_dict(new_ckpt, strict=False)
assert len(load_result.unexpected_keys) == 0, f"Unexpected keys: {load_result.unexpected_keys}"
model.eval()
model.to("cuda")

transform = transforms.Compose(
    [transforms.ToTensor(), transforms.Lambda(lambda x: x.repeat(3, 1, 1) if x.size(0) == 1 else x)])


def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert((message)),
            None if response is None else mdtex2html.convert(response),
        )
    return y


gr.Chatbot.postprocess = postprocess


def parse_text(text, image_path, video_path, audio_path):
    """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
    outputs = text
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f'<br></code></pre>'
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", "\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines) + "<br>"
    if image_path is not None:
        text += f'<img src="./file={image_path}" style="display: inline-block;"><br>'
        outputs = f'<Image>{image_path}</Image> ' + outputs
    if video_path is not None:
        text += f' <video controls playsinline height="320" width="240" style="display: inline-block;"  src="./file={video_path}"></video6><br>'
        outputs = f'<Video>{video_path}</Video> ' + outputs
    if audio_path is not None:
        text += f'<audio controls playsinline><source src="./file={audio_path}" type="audio/wav"></audio><br>'
        outputs = f'<Audio>{audio_path}</Audio> ' + outputs
    # text = text[::-1].replace(">rb<", "", 1)[::-1]
    text = text[:-len("<br>")].rstrip() if text.endswith("<br>") else text
    return text, outputs


def save_audio_to_local(audio, sec):
    global generated_audio_files
    if not os.path.exists('temp'):
        os.mkdir('temp')
    filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.wav')
    if args.music_decoder == "audioldm2":
        scipy.io.wavfile.write(filename, rate=16000, data=audio[0])
    else:
        scipy.io.wavfile.write(filename, rate=model.generation_model.config.audio_encoder.sampling_rate, data=audio)
    generated_audio_files.append(filename)
    return filename


def parse_reponse(model_outputs, audio_length_in_s):
    response = ''
    text_outputs = []
    for output_i, p in enumerate(model_outputs):
        if isinstance(p, str):
            response += p.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')
            response += '<br>'
            text_outputs.append(p.replace(' '.join([f'[AUD{i}]' for i in range(8)]), ''))
        elif 'aud' in p.keys():
            _temp_output = ''
            for idx, m in enumerate(p['aud']):
                if isinstance(m, str):
                    response += m.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')
                    response += '<br>'
                    _temp_output += m.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')
                else:
                    filename = save_audio_to_local(m, audio_length_in_s)
                    print(filename)
                    _temp_output = f'<Audio>{filename}</Audio> ' + _temp_output
                    response += f'<audio controls playsinline><source src="./file={filename}" type="audio/wav"></audio>'
            text_outputs.append(_temp_output)
        else:
            pass
    response = response[:-len("<br>")].rstrip() if response.endswith("<br>") else response
    return response, text_outputs


def reset_user_input():
    return gr.update(value='')


def reset_dialog():
    return [], []


def reset_state():
    global generated_audio_files
    generated_audio_files = []
    return None, None, None, None, [], [], []


def upload_image(conversation, chat_history, image_input):
    input_image = Image.open(image_input.name).resize(
        (224, 224)).convert('RGB')
    input_image.save(image_input.name)  # Overwrite with smaller image.
    conversation += [(f'<img src="./file={image_input.name}" style="display: inline-block;">', "")]
    return conversation, chat_history + [input_image, ""]


def read_video_pyav(container, indices):
    frames = []
    container.seek(0)
    for i, frame in enumerate(container.decode(video=0)):
        frames.append(frame)
    chosen_frames = []
    for i in indices:
        chosen_frames.append(frames[i])
    return np.stack([x.to_ndarray(format="rgb24") for x in chosen_frames])


def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
    converted_len = int(clip_len * frame_sample_rate)
    if converted_len > seg_len:
        converted_len = 0
    end_idx = np.random.randint(converted_len, seg_len)
    start_idx = end_idx - converted_len
    indices = np.linspace(start_idx, end_idx, num=clip_len)
    indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
    return indices


def get_video_length(filename):
    print("Getting Video Length")
    result = subprocess.run(["ffprobe", "-v", "error", "-show_entries",
                             "format=duration", "-of",
                             "default=noprint_wrappers=1:nokey=1", filename],
                            stdout=subprocess.PIPE,
                            stderr=subprocess.STDOUT)
    return int(round(float(result.stdout)))


def get_audio_length(filename):
    return int(round(librosa.get_duration(path=filename)))


def predict(
        prompt_input,
        image_path,
        audio_path,
        video_path,
        chatbot,
        top_p,
        temperature,
        history,
        modality_cache,
        audio_length_in_s):
    global generated_audio_files
    prompts = [llama.format_prompt(prompt_input)]
    prompts = [model.tokenizer(x).input_ids for x in prompts]
    print(image_path, audio_path, video_path)
    image, audio, video = None, None, None
    if image_path is not None:
        image = transform(Image.open(image_path))
    if audio_path is not None:
        sample_rate = 24000
        waveform, sr = torchaudio.load(audio_path)
        if sample_rate != sr:
            waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate)
        audio = torch.mean(waveform, 0)
    if video_path is not None:
        print("Opening Video")
        container = av.open(video_path)
        indices = sample_frame_indices(clip_len=32, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
        video = read_video_pyav(container=container, indices=indices)

    if len(generated_audio_files) != 0:
        audio_length_in_s = get_audio_length(generated_audio_files[-1])
        sample_rate = 24000
        waveform, sr = torchaudio.load(generated_audio_files[-1])
        if sample_rate != sr:
            waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate)
        audio = torch.mean(waveform, 0)
        audio_length_in_s = int(len(audio)//sample_rate)
        print(f"Audio Length: {audio_length_in_s}")
    if video_path is not None:
        audio_length_in_s = get_video_length(video_path)
        print(f"Video Length: {audio_length_in_s}")
    if audio_path is not None:
        audio_length_in_s = get_audio_length(audio_path)
        generated_audio_files.append(audio_path)
        print(f"Audio Length: {audio_length_in_s}")

    print(image, video, audio)
    response = model.generate(prompts, audio, image, video, 200, temperature, top_p,
                              audio_length_in_s=audio_length_in_s)
    print(response)
    response_chat, response_outputs = parse_reponse(response, audio_length_in_s)
    print('text_outputs: ', response_outputs)
    user_chat, user_outputs = parse_text(prompt_input, image_path, video_path, audio_path)
    chatbot.append((user_chat, response_chat))
    history.append((user_outputs, ''.join(response_outputs).replace('\n###', '')))
    return chatbot, history, modality_cache, None, None, None,


with gr.Blocks() as demo:
    gr.HTML("""
        <h1 align="center" style=" display: flex; flex-direction: row; justify-content: center; font-size: 25pt; "><img src='./file=bot.png' width="50" height="50" style="margin-right: 10px;">M<sup style="line-height: 200%; font-size: 60%">2</sup>UGen</h1>
        <h3>This is the demo page of M<sup>2</sup>UGen, a Multimodal LLM capable of Music Understanding and Generation!</h3>
        <div style="display: flex;"><a href='https://arxiv.org/pdf/2311.11255.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
        """)

    with gr.Row():
        with gr.Column(scale=0.7, min_width=500):
            with gr.Row():
                chatbot = gr.Chatbot(label='M2UGen Chatbot', avatar_images=(
                (os.path.join(os.path.dirname(__file__), 'user.png')),
                (os.path.join(os.path.dirname(__file__), "bot.png")))).style(height=440)

            with gr.Tab("User Input"):
                with gr.Row(scale=3):
                    user_input = gr.Textbox(label="Text", placeholder="Key in something here...", lines=3)
                with gr.Row(scale=3):
                    with gr.Column(scale=1):
                        # image_btn = gr.UploadButton("🖼️ Upload Image", file_types=["image"])
                        image_path = gr.Image(type="filepath",
                                              label="Image")  # .style(height=200)  # <PIL.Image.Image image mode=RGB size=512x512 at 0x7F6E06738D90>
                    with gr.Column(scale=1):
                        audio_path = gr.Audio(type='filepath')  # .style(height=200)
                    with gr.Column(scale=1):
                        video_path = gr.Video()  # .style(height=200) # , value=None, interactive=True
        with gr.Column(scale=0.3, min_width=300):
            with gr.Group():
                with gr.Accordion('Text Advanced Options', open=True):
                    top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
                    temperature = gr.Slider(0, 1, value=0.6, step=0.01, label="Temperature", interactive=True)
                with gr.Accordion('Audio Advanced Options', open=False):
                    audio_length_in_s = gr.Slider(5, 30, value=30, step=1, label="The audio length in seconds",
                                                  interactive=True)
            with gr.Tab("Operation"):
                with gr.Row(scale=1):
                    submitBtn = gr.Button(value="Submit & Run", variant="primary")
                with gr.Row(scale=1):
                    emptyBtn = gr.Button("Clear History")

    history = gr.State([])
    modality_cache = gr.State([])

    submitBtn.click(
        predict, [
            user_input,
            image_path,
            audio_path,
            video_path,
            chatbot,
            top_p,
            temperature,
            history,
            modality_cache,
            audio_length_in_s
        ], [
            chatbot,
            history,
            modality_cache,
            image_path,
            audio_path,
            video_path
        ],
        show_progress=True
    )

    submitBtn.click(reset_user_input, [], [user_input])
    emptyBtn.click(reset_state, outputs=[
        image_path,
        audio_path,
        video_path,
        chatbot,
        history,
        modality_cache
    ], show_progress=True)

demo.queue().launch(share=True, inbrowser=True, server_name='0.0.0.0', server_port=24000)