File size: 36,713 Bytes
795ce43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
import json
import os
from pathlib import Path
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

from .llama import Transformer, ModelArgs, RMSNorm
from .projector import ProjectionLayer
from util.misc import download
from .utils import sample_top_p
from .musicgen.musicgen import MusicgenForConditionalGeneration
from .audioldm2 import AudioLDM2Pipeline

from transformers import LlamaTokenizer
from transformers import Wav2Vec2FeatureExtractor, AutoModel
from transformers import ViTImageProcessor, ViTModel
from transformers import VivitImageProcessor, VivitModel
from transformers import AutoProcessor

import torchaudio


class M2UGen(nn.Module):
    """ Masked Autoencoder with VisionTransformer backbone
    """

    def __init__(self, llama_ckpt_dir, llama_tokenizer, model_args, knn=False, knn_dir="./ckpts", stage=1,
                 legacy_bridge=False, load_llama=True, device=None):
        super().__init__()

        self.args = model_args

        if device is None:
            self.device = "cuda" if torch.cuda.is_available() else "cpu"
        else:
            self.device = device

        # 1. MERT Encoder
        # The model files for MERT can be downloaded here in case of network issues:
        # https://huggingface.co/m-a-p/MERT-v1-330M
        # And set the mert_path argument to directory with the model files
        print(f'Initialize MERT...')
        self.mert_model = AutoModel.from_pretrained(self.args.mert_path, trust_remote_code=True)  # .to(self.device)
        self.mert_processor = Wav2Vec2FeatureExtractor.from_pretrained(self.args.mert_path, trust_remote_code=True)
        self.mu_mert_agg = nn.Conv1d(in_channels=25, out_channels=1, kernel_size=1)
        self.mu_mert_proj = nn.Linear(1024, 4096)

        if legacy_bridge:
            bridge_norm_layer = nn.LayerNorm
            bridge_bias = True
        else:
            bridge_norm_layer = RMSNorm
            bridge_bias = False

        self.feature_scaler = 1

        self.mu_mert_norm_1 = bridge_norm_layer(4096)
        self.mu_mert_f1_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
        self.mu_mert_f2_1 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
        self.mu_mert_f3_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)

        self.mu_mert_norm_2 = bridge_norm_layer(4096)
        self.mu_mert_f1_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
        self.mu_mert_f2_2 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
        self.mu_mert_f3_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)

        self.mu_mert_norm_3 = bridge_norm_layer(4096)
        self.mu_mert_f1_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
        self.mu_mert_f2_3 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
        self.mu_mert_f3_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
        print(f'MERT initialized...')

        # 2. ViT Encoder
        # The model files for ViT can be downloaded here in case of network issues:
        # https://huggingface.co/google/vit-base-patch16-224-in21k
        # And set the vit_path argument to directory with the model files
        print(f'Initialize ViT...')
        self.vit_model = ViTModel.from_pretrained(self.args.vit_path)  # .to(self.device)
        self.vit_model.eval()
        self.vit_processor = ViTImageProcessor.from_pretrained(self.args.vit_path, do_rescale=False)
        self.iu_vit_agg = nn.Conv1d(in_channels=197, out_channels=1, kernel_size=1)
        self.iu_vit_proj = nn.Linear(768, 4096)

        self.iu_vit_norm_1 = bridge_norm_layer(4096)
        self.iu_vit_f1_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
        self.iu_vit_f2_1 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
        self.iu_vit_f3_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)

        self.iu_vit_norm_2 = bridge_norm_layer(4096)
        self.iu_vit_f1_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
        self.iu_vit_f2_2 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
        self.iu_vit_f3_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)

        self.iu_vit_norm_3 = bridge_norm_layer(4096)
        self.iu_vit_f1_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
        self.iu_vit_f2_3 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
        self.iu_vit_f3_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
        print(f'ViT initialized...')

        # 3. ViViT Encoder
        # The model files for ViViT can be downloaded here in case of network issues:
        # https://huggingface.co/google/vivit-b-16x2-kinetics400
        # And set the vivit_path argument to directory with the model files
        print(f'Initialize ViViT...')
        self.vivit_model = VivitModel.from_pretrained(self.args.vivit_path)  # .to(self.device)
        self.vivit_model.eval()
        self.vivit_processor = VivitImageProcessor.from_pretrained(self.args.vivit_path)
        self.iu_vivit_agg = nn.Conv1d(in_channels=3137, out_channels=1, kernel_size=1)
        self.iu_vivit_proj = nn.Linear(768, 4096)

        self.iu_vivit_norm_1 = bridge_norm_layer(4096)
        self.iu_vivit_f1_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
        self.iu_vivit_f2_1 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
        self.iu_vivit_f3_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)

        self.iu_vivit_norm_2 = bridge_norm_layer(4096)
        self.iu_vivit_f1_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
        self.iu_vivit_f2_2 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
        self.iu_vivit_f3_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)

        self.iu_vivit_norm_3 = bridge_norm_layer(4096)
        self.iu_vivit_f1_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
        self.iu_vivit_f2_3 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias)
        self.iu_vivit_f3_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias)
        print(f'ViViT initialized...')

        # 4. llama
        with open(os.path.join(llama_ckpt_dir, "params.json"), "r") as f:
            params = json.loads(f.read())
        bias_lora = True

        if self.args.music_decoder.lower() == "audioldm2":
            self.model_args: ModelArgs = ModelArgs(
                max_seq_len=1024, max_batch_size=1, w_bias=bias_lora, w_lora=bias_lora,
                num_output_tokens=1, output_dim_tokens=137216,
                **params)  # max_batch_size only affects inference
        else:
            self.model_args: ModelArgs = ModelArgs(
                max_seq_len=1024, max_batch_size=1, w_bias=bias_lora, w_lora=bias_lora,
                num_output_tokens=128, output_dim_tokens=768,
                **params)  # max_batch_size only affects inference
        print(f"model args: {self.model_args}")

        # 5. tokenizer
        self.tokenizer = LlamaTokenizer.from_pretrained(
            llama_tokenizer)  # Tokenizer(model_path=llama_tokenizer, num_aud_tokens=self.model_args.num_gen_audio_tokens)
        self._add_audio_token()
        self.model_args.vocab_size = len(self.tokenizer)

        if torch.cuda.is_available():
            torch.set_default_tensor_type(torch.cuda.HalfTensor)
        self.llama = Transformer(self.model_args)
        torch.set_default_tensor_type(torch.FloatTensor)

        if load_llama:
            print(f"Loading LLaMA Checkpoint...")
            ckpts = sorted(Path(llama_ckpt_dir).glob("*.pth"))

            """
            Adapted from https://github.com/cedrickchee/llama/blob/main/chattyllama/combined/inference.py
            """
            key_to_dim = {
                "w1": 0,
                "w2": -1,
                "w3": 0,
                "wo": -1,
                "wq": 0,
                "wk": 0,
                "wv": 0,
                "output": 0,
                "tok_embeddings": 2,
                "ffn_norm": None,
                "attention_norm": None,
                "norm": None,
                "rope": None,
            }
            for i, ckpt in enumerate(ckpts):
                checkpoint = torch.load(ckpt, map_location="cpu")
                for parameter_name, parameter in self.llama.named_parameters():
                    short_name = parameter_name.split(".")[-2]
                    if "gate" in parameter_name or "lora" in parameter_name or "bias" in parameter_name:
                        continue
                    if key_to_dim[short_name] is None and i == 0:
                        parameter.data = checkpoint[parameter_name]
                    elif key_to_dim[short_name] == 0:
                        size = checkpoint[parameter_name].size(0)
                        parameter.data[size * i: size * (i + 1), :] = checkpoint[
                            parameter_name
                        ]
                    elif key_to_dim[short_name] == -1:
                        size = checkpoint[parameter_name].size(-1)
                        parameter.data[:, size * i: size * (i + 1)] = checkpoint[
                            parameter_name
                        ]
                    elif key_to_dim[short_name] == 2:
                        size = checkpoint[parameter_name].size(-1)
                        parameter.data[:-self.model_args.num_gen_audio_tokens, size * i: size * (i + 1)] = checkpoint[
                            parameter_name
                        ]
                        parameter.data[-self.model_args.num_gen_audio_tokens:, :] = 1
                del checkpoint
            print(f"LLaMA Checkpoint Loaded")

        # 5. projector
        self.output_projector = ProjectionLayer(4096, self.model_args.output_dim_tokens,
                                                num_input_tokens=self.model_args.num_gen_audio_tokens,
                                                num_output_tokens=self.model_args.num_output_tokens)

        # 6. Generator
        if self.args.music_decoder.lower() == "audioldm2":
            # The model files for AudioLDM2 can be downloaded here in case of network issues:
            # https://huggingface.co/cvssp/audioldm2-music
            # And set the music_decoder_path argument to directory with the model files
            print(f'Initialize AudioLDM2...')
            dtype = torch.float16 if torch.cuda.is_available() else torch.float32
            self.generation_model = AudioLDM2Pipeline.from_pretrained(self.args.music_decoder_path, torch_dtype=dtype)
            self.generation_model.to("cuda")
            print(f'AudioLDM2 initialized...')
        else:
            # The model files for MusicGen can be downloaded here in case of network issues:
            # https://huggingface.co/facebook/musicgen-medium
            # And set the music_decoder_path argument to directory with the model files
            print(f'Initialize MusicGen...')
            self.generation_processor = AutoProcessor.from_pretrained(self.args.music_decoder_path)
            self.generation_model = MusicgenForConditionalGeneration.from_pretrained(self.args.music_decoder_path)
            self.generation_model.eval()
            print(f'MusicGen initialized...')
        self.music_decoder = self.args.music_decoder.lower()

        # 4. prefix
        self.query_layer = 20
        self.query_len = 1
        self.prefix_query = nn.Embedding(self.query_layer * self.query_len, self.model_args.dim)

        # 5. knn
        self.knn = knn
        if knn:
            import faiss
            self.index = faiss.read_index(download("https://huggingface.co/csuhan/knn/resolve/main/knn.index", knn_dir))

        # 6. training criterion
        self.criterion = torch.nn.CrossEntropyLoss(ignore_index=0)
        self.l2_loss = torch.nn.MSELoss()
        self.stage = stage
        self.set_default_trainability(self.stage)

    def get_trainable_params(self, stage=1):
        trainable = {}
        if stage == 1:
            for name, para in self.named_parameters():
                if "llama." in name:
                    if 'norm' in name or 'bias' in name or 'lora' in name:
                        trainable[name] = para
                if "mu_mert_" in name:
                    trainable[name] = para
                if "iu_vivit_" in name:
                    trainable[name] = para
                if "iu_vit_" in name:
                    trainable[name] = para
                if "prefix_query" in name:
                    trainable[name] = para
                if "output_projector" in name:
                    trainable[name] = para
                if "tok_embeddings" in name:
                    trainable[name] = para
        elif stage == 2:
            for name, para in self.named_parameters():
                if "llama." in name:
                    if 'norm' in name or 'bias' in name or 'lora' in name:
                        trainable[name] = para
                if "output_projector" in name:
                    trainable[name] = para
                if "prefix_query" in name:
                    trainable[name] = para
                if "tok_embeddings" in name:
                    trainable[name] = para
        elif stage == 3:
            for name, para in self.named_parameters():
                if "llama." in name:
                    if 'norm' in name or 'bias' in name or 'lora' in name:
                        trainable[name] = para
                elif "prefix_query" in name:
                    trainable[name] = para
                elif "tok_embeddings" in name:
                    trainable[name] = para
        return trainable

    def set_default_trainability(self, stage=1):
        for key, value in self.named_parameters():
            value.requires_grad = False
        trainable_params = self.get_trainable_params(stage)
        print(f"Trainable Params: {trainable_params.keys()}")
        for key, value in trainable_params.items():
            value.data = value.data.float()
            value.requires_grad = True

    def _add_audio_token(self):
        self.audio_tokens = []
        for i in range(self.model_args.num_gen_audio_tokens):
            print(f'Adding [AUD{i}] token to vocabulary.')
            print(f'Before adding new token, tokenizer("[AUD{i}]") =',
                  self.tokenizer(f'[AUD{i}]', add_special_tokens=False))
            num_added_tokens = self.tokenizer.add_tokens([f'[AUD{i}]'])
            print(f'After adding {num_added_tokens} new tokens, tokenizer("[AUD{i}]") =',
                  self.tokenizer(f'[AUD{i}]', add_special_tokens=False), ' Number of tokens: ', len(self.tokenizer))
            gen_token_idx = self.tokenizer(f'[AUD{i}]', add_special_tokens=False).input_ids
            assert len(gen_token_idx) == 1, gen_token_idx
            self.audio_tokens.append(gen_token_idx[0])

    def load_audio(self, audio_path, target_sr=16000):
        y, sr = torchaudio.load(audio_path)
        resampler = torchaudio.transforms.Resample(sr, target_sr, dtype=y.dtype)
        audio = resampler(y)
        return audio, target_sr

    def encode_audio(self, x):
        xs = []
        for sub_x in x:
            all_inputs = [self.mert_processor(sub_x[ix * self.mert_processor.sampling_rate:min(
                (ix + 60) * self.mert_processor.sampling_rate, len(sub_x))],
                                              sampling_rate=self.mert_processor.sampling_rate,
                                              return_tensors="pt").to(self.mert_model.device) for ix in
                          range(0, len(sub_x) // (self.mert_processor.sampling_rate * 60) + 1, 60)]
            aggoutputs = torch.zeros(1, 25, 1024).to(self.mert_model.device)
            for inputs in all_inputs:
                with torch.no_grad():
                    outputs = self.mert_model(**inputs, output_hidden_states=True)
                all_layer_hidden_states = torch.stack(outputs.hidden_states).squeeze()
                sub_x = all_layer_hidden_states.mean(-2).unsqueeze(0)
                aggoutputs += sub_x
            aggoutputs /= len(all_inputs)
            sub_x = self.mu_mert_agg(aggoutputs.to(self.device)).squeeze()
            del aggoutputs
            xs.append(sub_x)
        x = torch.stack(xs, dim=0)
        return x

    def encode_image(self, x):
        xs = []
        for sub_x in x:
            inputs = self.vit_processor(images=sub_x, return_tensors="pt").to(self.vit_model.device)
            with torch.no_grad():
                outputs = self.vit_model(**inputs)
            last_hidden_states = outputs.last_hidden_state
            sub_x = self.iu_vit_agg(last_hidden_states.to(self.device)).squeeze()
            xs.append(sub_x)
        return torch.stack(xs, dim=0)

    def encode_video(self, x):
        xs = []
        for sub_x in x:
            inputs = self.vivit_processor(list(sub_x), padding=True, return_tensors="pt").to(self.vivit_model.device)
            with torch.no_grad():
                outputs = self.vivit_model(**inputs)
            last_hidden_states = outputs.last_hidden_state
            sub_x = self.iu_vivit_agg(last_hidden_states.to(self.device)).squeeze()
            xs.append(sub_x)
        return torch.stack(xs, dim=0)

    def forward_audio(self, inputs, cache_size=10, cache_t=20, cache_weight=0.5):
        outputs = []
        outputs_weights = []
        for input_type, (input, input_weight) in inputs.items():
            outputs.append(F.normalize(self.encode_audio(input), dim=-1))
            outputs_weights.append(input_weight)
        outputs_weights = [x / (sum(outputs_weights) + 1e-6) for x in outputs_weights]

        audio_feats = sum([output * output_weight for output, output_weight in zip(outputs, outputs_weights)])
        device = audio_feats.device

        if self.knn:
            audio_feats_ori = audio_feats
            sims, indices = self.index.search(audio_feats.cpu(), int(cache_size))
            B = sims.shape[0]
            prototypes = [self.index.reconstruct(x) for x in indices.reshape(-1, ).tolist()]
            prototypes = np.vstack(prototypes).reshape(B, int(cache_size), -1)  # [N, top_k, 1024]
            sims = torch.tensor(sims, device=device)
            prototypes = torch.tensor(prototypes, device=device)

            sims = (sims * cache_t).softmax(dim=-1)
            audio_feats = sims @ prototypes
            audio_feats = audio_feats / audio_feats.norm(dim=-1, keepdim=True)

            audio_feats = (1 - cache_weight) * audio_feats_ori + cache_weight * audio_feats
            audio_feats = audio_feats / audio_feats.norm(dim=-1, keepdim=True)

        audio_feats = audio_feats.unsqueeze(1)  # B, 1, D
        audio_feats = self.mu_mert_proj(audio_feats)
        audio_feats_norm = self.mu_mert_norm_1(audio_feats)
        audio_feats = audio_feats + self.mu_mert_f2_1(
            F.silu(self.mu_mert_f1_1(audio_feats_norm)) * self.mu_mert_f3_1(audio_feats_norm))

        audio_feats_norm = self.mu_mert_norm_2(audio_feats)
        audio_feats = audio_feats + self.mu_mert_f2_2(
            F.silu(self.mu_mert_f1_2(audio_feats_norm)) * self.mu_mert_f3_2(audio_feats_norm))

        audio_feats_norm = self.mu_mert_norm_3(audio_feats)
        audio_feats = audio_feats + self.mu_mert_f2_3(
            F.silu(self.mu_mert_f1_3(audio_feats_norm)) * self.mu_mert_f3_3(audio_feats_norm))
        return audio_feats

    def forward_image(self, inputs, cache_size=10, cache_t=20, cache_weight=0.5):
        outputs = []
        outputs_weights = []
        for input_type, (input, input_weight) in inputs.items():
            outputs.append(F.normalize(self.encode_image(input), dim=-1))
            outputs_weights.append(input_weight)
        outputs_weights = [x / (sum(outputs_weights) + 1e-6) for x in outputs_weights]

        image_feats = sum([output * output_weight for output, output_weight in zip(outputs, outputs_weights)])
        device = image_feats.device

        if self.knn:
            image_feats_ori = image_feats
            sims, indices = self.index.search(image_feats.cpu(), int(cache_size))
            B = sims.shape[0]
            prototypes = [self.index.reconstruct(x) for x in indices.reshape(-1, ).tolist()]
            prototypes = np.vstack(prototypes).reshape(B, int(cache_size), -1)  # [N, top_k, 1024]
            sims = torch.tensor(sims, device=device)
            prototypes = torch.tensor(prototypes, device=device)

            sims = (sims * cache_t).softmax(dim=-1)
            image_feats = sims @ prototypes
            image_feats = image_feats / image_feats.norm(dim=-1, keepdim=True)

            image_feats = (1 - cache_weight) * image_feats_ori + cache_weight * image_feats
            image_feats = image_feats / image_feats.norm(dim=-1, keepdim=True)

        image_feats = image_feats.unsqueeze(1)  # B, 1, D
        image_feats = self.iu_vit_proj(image_feats)
        image_feats_norm = self.iu_vit_norm_1(image_feats)
        image_feats = image_feats + self.iu_vit_f2_1(
            F.silu(self.iu_vit_f1_1(image_feats_norm)) * self.iu_vit_f3_1(image_feats_norm))

        image_feats_norm = self.iu_vit_norm_2(image_feats)
        image_feats = image_feats + self.iu_vit_f2_2(
            F.silu(self.iu_vit_f1_2(image_feats_norm)) * self.iu_vit_f3_2(image_feats_norm))

        image_feats_norm = self.iu_vit_norm_3(image_feats)
        image_feats = image_feats + self.iu_vit_f2_3(
            F.silu(self.iu_vit_f1_3(image_feats_norm)) * self.iu_vit_f3_3(image_feats_norm))
        return image_feats

    def forward_video(self, inputs, cache_size=10, cache_t=20, cache_weight=0.5):
        outputs = []
        outputs_weights = []
        for input_type, (input, input_weight) in inputs.items():
            outputs.append(F.normalize(self.encode_video(input), dim=-1))
            outputs_weights.append(input_weight)
        outputs_weights = [x / (sum(outputs_weights) + 1e-6) for x in outputs_weights]

        video_feats = sum([output * output_weight for output, output_weight in zip(outputs, outputs_weights)])
        device = video_feats.device

        if self.knn:
            video_feats_ori = video_feats
            sims, indices = self.index.search(video_feats.cpu(), int(cache_size))
            B = sims.shape[0]
            prototypes = [self.index.reconstruct(x) for x in indices.reshape(-1, ).tolist()]
            prototypes = np.vstack(prototypes).reshape(B, int(cache_size), -1)  # [N, top_k, 1024]
            sims = torch.tensor(sims, device=device)
            prototypes = torch.tensor(prototypes, device=device)

            sims = (sims * cache_t).softmax(dim=-1)
            video_feats = sims @ prototypes
            video_feats = video_feats / video_feats.norm(dim=-1, keepdim=True)

            video_feats = (1 - cache_weight) * video_feats_ori + cache_weight * video_feats
            video_feats = video_feats / video_feats.norm(dim=-1, keepdim=True)

        video_feats = video_feats.unsqueeze(1)  # B, 1, D
        video_feats = self.iu_vivit_proj(video_feats)
        video_feats_norm = self.iu_vivit_norm_1(video_feats)
        video_feats = video_feats + self.iu_vivit_f2_1(
            F.silu(self.iu_vivit_f1_1(video_feats_norm)) * self.iu_vivit_f3_1(video_feats_norm))

        video_feats_norm = self.iu_vivit_norm_2(video_feats)
        video_feats = video_feats + self.iu_vivit_f2_2(
            F.silu(self.iu_vivit_f1_2(video_feats_norm)) * self.iu_vivit_f3_2(video_feats_norm))

        video_feats_norm = self.iu_vivit_norm_3(video_feats)
        video_feats = video_feats + self.iu_vivit_f2_3(
            F.silu(self.iu_vivit_f1_3(video_feats_norm)) * self.iu_vivit_f3_3(video_feats_norm))
        return video_feats

    @torch.inference_mode()
    def forward_inference(self, tokens, start_pos: int, audio_feats=None, image_feats=None, video_feats=None):
        _bsz, seqlen = tokens.shape
        h = self.llama.tok_embeddings(tokens)
        freqs_cis = self.llama.freqs_cis.to(h.device)
        freqs_cis = freqs_cis[start_pos:start_pos + seqlen]

        feats = torch.zeros((1, 1, 4096)).to(self.device)
        if audio_feats is not None:
            feats += audio_feats
        if video_feats is not None:
            feats += video_feats
        if image_feats is not None:
            feats += image_feats

        mask = None
        mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=h.device)
        mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)

        music_output_embedding = []
        for layer in self.llama.layers[:-1 * self.query_layer]:
            h = layer(h, 0, freqs_cis, mask)
            music_output_embedding.append(h)

        prefix_query = self.prefix_query.weight.reshape(self.query_layer, 1, 4096).unsqueeze(1)

        prefix_index = 0
        for layer in self.llama.layers[-1 * self.query_layer:]:
            h = layer(h, 0, freqs_cis, mask, feats + prefix_query[prefix_index])
            prefix_index = prefix_index + 1

        h = self.llama.norm(h)
        output = self.llama.output(h[:, -1, :])

        return output.float(), torch.cat(music_output_embedding[-1:], dim=1)

    def forward(self, tokens, labels, audios=None, imgs=None, videos=None, music_caption=None):
        feats = torch.zeros((1, 1, 4096)).to(self.device)
        if audios is not None:
            feats += self.forward_audio({'Audio': [audios, 1]})
        if videos is not None:
            feats += self.forward_video({'Video': [videos, 1]})
        if imgs is not None:
            feats += self.forward_image({'Image': [imgs, 1]})
        _bsz, seqlen = tokens.shape

        h = self.llama.tok_embeddings(tokens.to(self.device))
        freqs_cis = self.llama.freqs_cis.to(h.device)
        freqs_cis = freqs_cis[:seqlen]
        mask = None
        mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=h.device)
        mask = torch.triu(mask, diagonal=0 + 1).type_as(h)

        for layer in self.llama.layers[:-1 * self.query_layer]:
            h = layer(h, 0, freqs_cis, mask)
        prefix_query = self.prefix_query.weight.reshape(self.query_layer, 1, 4096).unsqueeze(1)
        prefix_index = 0

        for layer in self.llama.layers[-1 * self.query_layer:]:
            h = layer(h, 0, freqs_cis, mask, feats + prefix_query[prefix_index])
            prefix_index = prefix_index + 1

        final_hidden = h
        h = self.llama.norm(h)
        output = self.llama.output(h)
        output = output[:, :-1, :]
        labels = labels[:, 1:]

        if labels.sum() == 0:
            c_loss = output.mean() * 0
        else:
            assert self.llama.vocab_size == 32000 + self.model_args.num_gen_audio_tokens, self.llama.vocab_size
            c_loss = self.criterion(output.reshape(-1, self.llama.vocab_size), labels.flatten().to(self.device))

        if music_caption is not None and any([mc != '' for mc in music_caption]):
            if not all([i in output for i in range(32000, 32008)]):
                c_loss += 100
            if self.music_decoder == "audioldm2":
                prompt_embeds, generated_prompt_embeds = self.generation_model(prompt=list(music_caption),
                                                                               guidance_scale=1,
                                                                               return_prompts_only=True)
                prompt_embeds = prompt_embeds.reshape(prompt_embeds.shape[0], -1)
                generated_prompt_embeds = generated_prompt_embeds.reshape(generated_prompt_embeds.shape[0], -1)
                out_embed = torch.cat([prompt_embeds, generated_prompt_embeds], dim=1)
                out_embed = 10 * out_embed.view(out_embed.size(0), 1, out_embed.size(1)).to(self.device)
            else:
                gen_inputs = self.generation_processor(text=music_caption, padding='max_length',
                                                       max_length=128, truncation=True, return_tensors="pt").to(
                    self.device)
                out_embed = 10 * self.generation_model.generate(**gen_inputs, guidance_scale=1, encoder_only=True)
                del gen_inputs
            start_pos = (labels == self.audio_tokens[0]).nonzero(as_tuple=False)[:, 1].tolist()
            assert len(start_pos) != 0, (self.tokenizer.batch_decode(labels), music_caption)
            hidden_states = []
            hidden_embedding = []
            input_embedding = []
            for b, s in enumerate(start_pos):
                hidden_embedding.append(final_hidden[b, s:s + self.model_args.num_gen_audio_tokens, :])
                input_embedding.append(
                    self.llama.tok_embeddings(labels[b, s:s + self.model_args.num_gen_audio_tokens].to(self.device)))
            hidden_embedding = torch.stack(hidden_embedding, dim=0).to(self.device)
            input_embedding = torch.stack(input_embedding, dim=0).to(self.device)
            hidden_states.append(self.output_projector(hidden_embedding, input_embedding))
            embeddings = torch.stack(hidden_states, dim=-1).sum(dim=-1)
            mse_loss = self.l2_loss(embeddings, out_embed)
            del hidden_states, input_embedding, hidden_embedding, out_embed, embeddings
            # c_loss += mse_loss
        else:
            if any([i in output for i in range(32000, 32008)]):
                c_loss += 100
            mse_loss = torch.tensor(0.0)
        del feats
        return c_loss, mse_loss

    @torch.inference_mode()
    def generate_music(self, embeddings, audio_length_in_s, music_caption):
        gen_prefix = ''.join([f'[AUD{i}]' for i in range(len(self.audio_tokens))])
        gen_prefx_ids = self.tokenizer(gen_prefix, add_special_tokens=False, return_tensors="pt").input_ids.to(
            self.device)
        gen_prefix_embs = self.llama.tok_embeddings(gen_prefx_ids)
        if self.music_decoder == "audioldm2":
            gen_emb = self.output_projector(embeddings.float().to("cuda"), gen_prefix_embs).squeeze(dim=0) / 10
            prompt_embeds, generated_prompt_embeds = gen_emb[:, :128 * 1024], gen_emb[:, 128 * 1024:]
            prompt_embeds = prompt_embeds.reshape(prompt_embeds.shape[0], 128, 1024)
            generated_prompt_embeds = generated_prompt_embeds.reshape(generated_prompt_embeds.shape[0], 8, 768)
            print("Generating Music...")
            print(music_caption)
            audio_outputs = self.generation_model(music_caption,
                                                  num_inference_steps=200,
                                                  num_waveforms_per_prompt=3,
                                                  negative_prompt='Low quality.',
                                                  audio_length_in_s=audio_length_in_s).audios
            return audio_outputs
        else:
            print("Generating Music...")
            gen_emb = 0.1 * self.output_projector(embeddings.float().to("cuda"), gen_prefix_embs) / 10
            gen_inputs = self.generation_processor(text=music_caption, padding='max_length',
                                                   max_length=128, truncation=True, return_tensors="pt").to(
                self.device)
            #gen_emb = self.generation_model.generate(**gen_inputs, guidance_scale=3.5, encoder_only=True)
            audio_outputs = self.generation_model.generate(**gen_inputs, guidance_scale=3.5,
                                                           max_new_tokens=int(256 / 5 * audio_length_in_s))
                                                           #encoder_outputs=(gen_emb,))
            return audio_outputs[0][0].cpu().detach().numpy()

    @torch.inference_mode()
    def generate(
            self,
            prompts,
            audios=None,
            imgs=None,
            videos=None,
            max_gen_len: int = 100,
            temperature: float = 0.1,
            top_p: float = 0.75,
            cache_size=10,
            cache_t=20,
            cache_weight=0.5,
            audio_length_in_s=10
    ):
        bsz = len(prompts)
        params = self.llama.params
        assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)

        with torch.cuda.amp.autocast():
            if audios is not None:
                audio_feats = self.forward_audio({'Audio': [[audios], 1]}, cache_size, cache_t, cache_weight)
            else:
                audio_feats = None
            if videos is not None:
                video_feats = self.forward_video({'Video': [[videos], 1]}, cache_size, cache_t, cache_weight)
            else:
                video_feats = None
            if imgs is not None:
                image_feats = self.forward_image({'Image': [[imgs], 1]}, cache_size, cache_t, cache_weight)
            else:
                image_feats = None

        if isinstance(prompts[0], str):
            prompts = [self.tokenizer(x).input_ids[:, 1:] for x in prompts]

        min_prompt_size = min([len(t) for t in prompts])
        max_prompt_size = max([len(t) for t in prompts])

        total_len = min(params.max_seq_len, max_gen_len + max_prompt_size)

        tokens = torch.full((bsz, total_len), 0).cuda().long()

        for k, t in enumerate(prompts):
            tokens[k, : len(t)] = torch.tensor(t).cuda().long()
        input_text_mask = tokens != 0
        start_pos = min_prompt_size
        prev_pos = 0
        music_output_embeddings = []
        start_gather = 0
        for cur_pos in range(start_pos, total_len):
            with torch.cuda.amp.autocast():
                logits, music_output_embedding = self.forward_inference(tokens[:, prev_pos:cur_pos], prev_pos,
                                                                        audio_feats, image_feats, video_feats)
            if temperature > 0:
                probs = torch.softmax(logits / temperature, dim=-1)
                next_token = sample_top_p(probs, top_p)
            else:
                next_token = torch.argmax(logits, dim=-1)
            next_token = next_token.reshape(-1)

            next_token = torch.where(
                input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
            )
            tokens[:, cur_pos] = next_token
            if next_token[0] == self.audio_tokens[start_gather]:
                if start_gather == 0:
                    music_output_embeddings = []
                music_output_embeddings.append(music_output_embedding[:, -1:, :])
                start_gather += 1
                if start_gather >= len(self.audio_tokens):
                    start_gather = 0
            # trick: early stop if bsz==1
            if bsz == 1 and self.tokenizer.decode(tokens[0, cur_pos - 2:cur_pos + 1]) == "\n###":
                break
            # prev_pos = cur_pos

        decoded = []
        for i, t in enumerate(tokens.tolist()):

            # cut to max gen len
            t = t[len(prompts[i]): len(prompts[i]) + max_gen_len]
            # cut to eos tok if any
            try:
                t = t[: t.index(13)]
            except ValueError:
                pass
            decoded.append(self.tokenizer.decode(t))

        if len(music_output_embeddings) == len(self.audio_tokens):
            music_output_embeddings = torch.cat(music_output_embeddings, dim=1)
            return [decoded[0], {'aud': [self.generate_music(music_output_embeddings, audio_length_in_s, decoded[0])]}]

        return [decoded[0]]


def load(model_path, llama_dir, mert_path="m-a-p/MERT-v1-330M", device="cuda" if torch.cuda.is_available() else "cpu",
         knn=False, knn_dir="./ckpts", llama_type="7B", stage=3):
    llama_ckpt_dir = os.path.join(llama_dir, llama_type)
    llama_tokenzier_path = llama_dir

    # load M2UGen weights and model_cfg
    print(f'Loading LLaMA-Adapter from {model_path}')
    adapter_ckpt = torch.load(model_path, map_location='cpu')
    model_cfg = adapter_ckpt.get('config', {})

    # The model files for MERT can be downloaded here in case of network issues:
    # https://huggingface.co/m-a-p/MERT-v1-330M
    # And set the MERT argument to directory with the model files
    model = M2UGen(
        llama_ckpt_dir, llama_tokenzier_path, mert_path, knn=knn, knn_dir=knn_dir, stage=stage)

    load_result = model.load_state_dict(adapter_ckpt['model'], strict=False)
    assert len(load_result.unexpected_keys) == 0, f"Unexpected keys: {load_result.unexpected_keys}"
    return model.to(device)