Spaces:
Runtime error
Runtime error
File size: 37,112 Bytes
795ce43 e94a16b 795ce43 e94a16b 795ce43 e94a16b 795ce43 e94a16b 795ce43 e94a16b 795ce43 e94a16b 795ce43 e94a16b 795ce43 e94a16b 795ce43 e94a16b 795ce43 a000794 795ce43 e94a16b 795ce43 e94a16b 795ce43 e94a16b 795ce43 a000794 795ce43 3b03b8f 795ce43 3b03b8f 795ce43 3b03b8f 795ce43 a000794 795ce43 3b03b8f 795ce43 3b03b8f 795ce43 a000794 795ce43 3b03b8f d9cb0bd 795ce43 3b03b8f 795ce43 bb70f8e 795ce43 a000794 795ce43 a000794 795ce43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
import json
import os
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from .llama import Transformer, ModelArgs, RMSNorm
from .projector import ProjectionLayer
from util.misc import download
from .utils import sample_top_p
from .musicgen.musicgen import MusicgenForConditionalGeneration
from .audioldm2 import AudioLDM2Pipeline
from transformers import LlamaTokenizer
from transformers import Wav2Vec2FeatureExtractor, AutoModel
from transformers import ViTImageProcessor, ViTModel
from transformers import VivitImageProcessor, VivitModel
from transformers import AutoProcessor
import torchaudio
class M2UGen(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, llama_ckpt_dir, llama_tokenizer, model_args, knn=False, knn_dir="./ckpts", stage=1,
legacy_bridge=False, load_llama=True, device=None):
super().__init__()
self.args = model_args
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
# 1. MERT Encoder
# The model files for MERT can be downloaded here in case of network issues:
# https://huggingface.co/m-a-p/MERT-v1-330M
# And set the mert_path argument to directory with the model files
print(f'Initialize MERT...')
self.mert_model = AutoModel.from_pretrained(self.args.mert_path, trust_remote_code=True).to("cuda:0")
self.mert_processor = Wav2Vec2FeatureExtractor.from_pretrained(self.args.mert_path, trust_remote_code=True)
self.mu_mert_agg = nn.Conv1d(in_channels=25, out_channels=1, kernel_size=1).to("cuda:0")
self.mu_mert_proj = nn.Linear(1024, 4096).to("cuda:0")
if legacy_bridge:
bridge_norm_layer = nn.LayerNorm
bridge_bias = True
else:
bridge_norm_layer = RMSNorm
bridge_bias = False
self.feature_scaler = 1
self.mu_mert_norm_1 = bridge_norm_layer(4096).to("cuda:0")
self.mu_mert_f1_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
self.mu_mert_f2_1 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias).to("cuda:0")
self.mu_mert_f3_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
self.mu_mert_norm_2 = bridge_norm_layer(4096).to("cuda:0")
self.mu_mert_f1_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
self.mu_mert_f2_2 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias).to("cuda:0")
self.mu_mert_f3_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
self.mu_mert_norm_3 = bridge_norm_layer(4096).to("cuda:0")
self.mu_mert_f1_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
self.mu_mert_f2_3 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias).to("cuda:0")
self.mu_mert_f3_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
print(f'MERT initialized...')
# 2. ViT Encoder
# The model files for ViT can be downloaded here in case of network issues:
# https://huggingface.co/google/vit-base-patch16-224-in21k
# And set the vit_path argument to directory with the model files
print(f'Initialize ViT...')
self.vit_model = ViTModel.from_pretrained(self.args.vit_path).to("cuda:0") # .to(self.device)
self.vit_model.eval()
self.vit_processor = ViTImageProcessor.from_pretrained(self.args.vit_path, do_rescale=False)
self.iu_vit_agg = nn.Conv1d(in_channels=197, out_channels=1, kernel_size=1).to("cuda:0")
self.iu_vit_proj = nn.Linear(768, 4096).to("cuda:0")
self.iu_vit_norm_1 = bridge_norm_layer(4096).to("cuda:0")
self.iu_vit_f1_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
self.iu_vit_f2_1 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias).to("cuda:0")
self.iu_vit_f3_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
self.iu_vit_norm_2 = bridge_norm_layer(4096).to("cuda:0")
self.iu_vit_f1_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
self.iu_vit_f2_2 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias).to("cuda:0")
self.iu_vit_f3_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
self.iu_vit_norm_3 = bridge_norm_layer(4096).to("cuda:0")
self.iu_vit_f1_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
self.iu_vit_f2_3 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias).to("cuda:0")
self.iu_vit_f3_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
print(f'ViT initialized...')
# 3. ViViT Encoder
# The model files for ViViT can be downloaded here in case of network issues:
# https://huggingface.co/google/vivit-b-16x2-kinetics400
# And set the vivit_path argument to directory with the model files
print(f'Initialize ViViT...')
self.vivit_model = VivitModel.from_pretrained(self.args.vivit_path).to("cuda:0") # .to(self.device)
self.vivit_model.eval()
self.vivit_processor = VivitImageProcessor.from_pretrained(self.args.vivit_path)
self.iu_vivit_agg = nn.Conv1d(in_channels=3137, out_channels=1, kernel_size=1).to("cuda:0")
self.iu_vivit_proj = nn.Linear(768, 4096).to("cuda:0")
self.iu_vivit_norm_1 = bridge_norm_layer(4096).to("cuda:0")
self.iu_vivit_f1_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
self.iu_vivit_f2_1 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias).to("cuda:0")
self.iu_vivit_f3_1 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
self.iu_vivit_norm_2 = bridge_norm_layer(4096).to("cuda:0")
self.iu_vivit_f1_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
self.iu_vivit_f2_2 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias).to("cuda:0")
self.iu_vivit_f3_2 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
self.iu_vivit_norm_3 = bridge_norm_layer(4096).to("cuda:0")
self.iu_vivit_f1_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
self.iu_vivit_f2_3 = nn.Linear(4096 * self.feature_scaler, 4096, bias=bridge_bias).to("cuda:0")
self.iu_vivit_f3_3 = nn.Linear(4096, 4096 * self.feature_scaler, bias=bridge_bias).to("cuda:0")
print(f'ViViT initialized...')
# 4. llama
with open(os.path.join(llama_ckpt_dir, "params.json"), "r") as f:
params = json.loads(f.read())
bias_lora = True
if self.args.music_decoder.lower() == "audioldm2":
self.model_args: ModelArgs = ModelArgs(
max_seq_len=1024, max_batch_size=1, w_bias=bias_lora, w_lora=bias_lora,
num_output_tokens=1, output_dim_tokens=137216,
**params) # max_batch_size only affects inference
else:
self.model_args: ModelArgs = ModelArgs(
max_seq_len=1024, max_batch_size=1, w_bias=bias_lora, w_lora=bias_lora,
num_output_tokens=128, output_dim_tokens=768,
**params) # max_batch_size only affects inference
print(f"model args: {self.model_args}")
# 5. tokenizer
self.tokenizer = LlamaTokenizer.from_pretrained(
llama_tokenizer) # Tokenizer(model_path=llama_tokenizer, num_aud_tokens=self.model_args.num_gen_audio_tokens)
self._add_audio_token()
self.model_args.vocab_size = len(self.tokenizer)
if torch.cuda.is_available():
torch.set_default_tensor_type(torch.cuda.HalfTensor)
self.llama = Transformer(self.model_args).to("cuda:0")
torch.set_default_tensor_type(torch.FloatTensor)
if load_llama:
print(f"Loading LLaMA Checkpoint...")
ckpts = sorted(Path(llama_ckpt_dir).glob("*.pth"))
"""
Adapted from https://github.com/cedrickchee/llama/blob/main/chattyllama/combined/inference.py
"""
key_to_dim = {
"w1": 0,
"w2": -1,
"w3": 0,
"wo": -1,
"wq": 0,
"wk": 0,
"wv": 0,
"output": 0,
"tok_embeddings": 2,
"ffn_norm": None,
"attention_norm": None,
"norm": None,
"rope": None,
}
for i, ckpt in enumerate(ckpts):
checkpoint = torch.load(ckpt, map_location="cpu")
for parameter_name, parameter in self.llama.named_parameters():
short_name = parameter_name.split(".")[-2]
if "gate" in parameter_name or "lora" in parameter_name or "bias" in parameter_name:
continue
if key_to_dim[short_name] is None and i == 0:
parameter.data = checkpoint[parameter_name]
elif key_to_dim[short_name] == 0:
size = checkpoint[parameter_name].size(0)
parameter.data[size * i: size * (i + 1), :] = checkpoint[
parameter_name
]
elif key_to_dim[short_name] == -1:
size = checkpoint[parameter_name].size(-1)
parameter.data[:, size * i: size * (i + 1)] = checkpoint[
parameter_name
]
elif key_to_dim[short_name] == 2:
size = checkpoint[parameter_name].size(-1)
parameter.data[:-self.model_args.num_gen_audio_tokens, size * i: size * (i + 1)] = checkpoint[
parameter_name
]
parameter.data[-self.model_args.num_gen_audio_tokens:, :] = 1
del checkpoint
print(f"LLaMA Checkpoint Loaded")
# 5. projector
self.output_projector = ProjectionLayer(4096, self.model_args.output_dim_tokens,
num_input_tokens=self.model_args.num_gen_audio_tokens,
num_output_tokens=self.model_args.num_output_tokens).to("cuda:1")
# 6. Generator
if self.args.music_decoder.lower() == "audioldm2":
# The model files for AudioLDM2 can be downloaded here in case of network issues:
# https://huggingface.co/cvssp/audioldm2-music
# And set the music_decoder_path argument to directory with the model files
print(f'Initialize AudioLDM2...')
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
self.generation_model = AudioLDM2Pipeline.from_pretrained(self.args.music_decoder_path, torch_dtype=dtype)
self.generation_model.to("cuda:1")
print(f'AudioLDM2 initialized...')
else:
# The model files for MusicGen can be downloaded here in case of network issues:
# https://huggingface.co/facebook/musicgen-medium
# And set the music_decoder_path argument to directory with the model files
print(f'Initialize MusicGen...')
self.generation_processor = AutoProcessor.from_pretrained(self.args.music_decoder_path)
self.generation_model = MusicgenForConditionalGeneration.from_pretrained(self.args.music_decoder_path).to("cuda:1")
self.generation_model.eval()
print(f'MusicGen initialized...')
self.music_decoder = self.args.music_decoder.lower()
# 4. prefix
self.query_layer = 20
self.query_len = 1
self.prefix_query = nn.Embedding(self.query_layer * self.query_len, self.model_args.dim).to("cuda:0")
# 5. knn
self.knn = knn
if knn:
import faiss
self.index = faiss.read_index(download("https://huggingface.co/csuhan/knn/resolve/main/knn.index", knn_dir))
# 6. training criterion
self.criterion = torch.nn.CrossEntropyLoss(ignore_index=0)
self.l2_loss = torch.nn.MSELoss()
self.stage = stage
self.set_default_trainability(self.stage)
def get_trainable_params(self, stage=1):
trainable = {}
if stage == 1:
for name, para in self.named_parameters():
if "llama." in name:
if 'norm' in name or 'bias' in name or 'lora' in name:
trainable[name] = para
if "mu_mert_" in name:
trainable[name] = para
if "iu_vivit_" in name:
trainable[name] = para
if "iu_vit_" in name:
trainable[name] = para
if "prefix_query" in name:
trainable[name] = para
if "output_projector" in name:
trainable[name] = para
if "tok_embeddings" in name:
trainable[name] = para
elif stage == 2:
for name, para in self.named_parameters():
if "llama." in name:
if 'norm' in name or 'bias' in name or 'lora' in name:
trainable[name] = para
if "output_projector" in name:
trainable[name] = para
if "prefix_query" in name:
trainable[name] = para
if "tok_embeddings" in name:
trainable[name] = para
elif stage == 3:
for name, para in self.named_parameters():
if "llama." in name:
if 'norm' in name or 'bias' in name or 'lora' in name:
trainable[name] = para
elif "prefix_query" in name:
trainable[name] = para
elif "tok_embeddings" in name:
trainable[name] = para
return trainable
def set_default_trainability(self, stage=1):
for key, value in self.named_parameters():
value.requires_grad = False
trainable_params = self.get_trainable_params(stage)
print(f"Trainable Params: {trainable_params.keys()}")
for key, value in trainable_params.items():
value.data = value.data.float()
value.requires_grad = True
def _add_audio_token(self):
self.audio_tokens = []
for i in range(self.model_args.num_gen_audio_tokens):
print(f'Adding [AUD{i}] token to vocabulary.')
print(f'Before adding new token, tokenizer("[AUD{i}]") =',
self.tokenizer(f'[AUD{i}]', add_special_tokens=False))
num_added_tokens = self.tokenizer.add_tokens([f'[AUD{i}]'])
print(f'After adding {num_added_tokens} new tokens, tokenizer("[AUD{i}]") =',
self.tokenizer(f'[AUD{i}]', add_special_tokens=False), ' Number of tokens: ', len(self.tokenizer))
gen_token_idx = self.tokenizer(f'[AUD{i}]', add_special_tokens=False).input_ids
assert len(gen_token_idx) == 1, gen_token_idx
self.audio_tokens.append(gen_token_idx[0])
def load_audio(self, audio_path, target_sr=16000):
y, sr = torchaudio.load(audio_path)
resampler = torchaudio.transforms.Resample(sr, target_sr, dtype=y.dtype)
audio = resampler(y)
return audio, target_sr
def encode_audio(self, x):
xs = []
for sub_x in x:
all_inputs = [self.mert_processor(sub_x[ix * self.mert_processor.sampling_rate:min(
(ix + 60) * self.mert_processor.sampling_rate, len(sub_x))],
sampling_rate=self.mert_processor.sampling_rate,
return_tensors="pt").to(self.mert_model.device) for ix in
range(0, len(sub_x) // (self.mert_processor.sampling_rate * 60) + 1, 60)]
aggoutputs = torch.zeros(1, 25, 1024).to(self.mert_model.device)
for inputs in all_inputs:
with torch.no_grad():
outputs = self.mert_model(**inputs, output_hidden_states=True)
all_layer_hidden_states = torch.stack(outputs.hidden_states).squeeze()
sub_x = all_layer_hidden_states.mean(-2).unsqueeze(0)
aggoutputs += sub_x
aggoutputs /= len(all_inputs)
sub_x = self.mu_mert_agg(aggoutputs.to("cuda:0")).squeeze()
del aggoutputs
xs.append(sub_x)
x = torch.stack(xs, dim=0)
return x
def encode_image(self, x):
xs = []
for sub_x in x:
inputs = self.vit_processor(images=sub_x, return_tensors="pt").to(self.vit_model.device)
with torch.no_grad():
outputs = self.vit_model(**inputs)
last_hidden_states = outputs.last_hidden_state
sub_x = self.iu_vit_agg(last_hidden_states.to("cuda:0")).squeeze()
xs.append(sub_x)
return torch.stack(xs, dim=0)
def encode_video(self, x):
xs = []
for sub_x in x:
inputs = self.vivit_processor(list(sub_x), padding=True, return_tensors="pt").to(self.vivit_model.device)
with torch.no_grad():
outputs = self.vivit_model(**inputs)
last_hidden_states = outputs.last_hidden_state
sub_x = self.iu_vivit_agg(last_hidden_states.to("cuda:0")).squeeze()
xs.append(sub_x)
return torch.stack(xs, dim=0)
def forward_audio(self, inputs, cache_size=10, cache_t=20, cache_weight=0.5):
outputs = []
outputs_weights = []
for input_type, (input, input_weight) in inputs.items():
outputs.append(F.normalize(self.encode_audio(input), dim=-1))
outputs_weights.append(input_weight)
outputs_weights = [x / (sum(outputs_weights) + 1e-6) for x in outputs_weights]
audio_feats = sum([output * output_weight for output, output_weight in zip(outputs, outputs_weights)])
device = audio_feats.device
if self.knn:
audio_feats_ori = audio_feats
sims, indices = self.index.search(audio_feats.cpu(), int(cache_size))
B = sims.shape[0]
prototypes = [self.index.reconstruct(x) for x in indices.reshape(-1, ).tolist()]
prototypes = np.vstack(prototypes).reshape(B, int(cache_size), -1) # [N, top_k, 1024]
sims = torch.tensor(sims, device=device)
prototypes = torch.tensor(prototypes, device=device)
sims = (sims * cache_t).softmax(dim=-1)
audio_feats = sims @ prototypes
audio_feats = audio_feats / audio_feats.norm(dim=-1, keepdim=True)
audio_feats = (1 - cache_weight) * audio_feats_ori + cache_weight * audio_feats
audio_feats = audio_feats / audio_feats.norm(dim=-1, keepdim=True)
audio_feats = audio_feats.unsqueeze(1) # B, 1, D
audio_feats = self.mu_mert_proj(audio_feats)
audio_feats_norm = self.mu_mert_norm_1(audio_feats)
audio_feats = audio_feats + self.mu_mert_f2_1(
F.silu(self.mu_mert_f1_1(audio_feats_norm)) * self.mu_mert_f3_1(audio_feats_norm))
audio_feats_norm = self.mu_mert_norm_2(audio_feats)
audio_feats = audio_feats + self.mu_mert_f2_2(
F.silu(self.mu_mert_f1_2(audio_feats_norm)) * self.mu_mert_f3_2(audio_feats_norm))
audio_feats_norm = self.mu_mert_norm_3(audio_feats)
audio_feats = audio_feats + self.mu_mert_f2_3(
F.silu(self.mu_mert_f1_3(audio_feats_norm)) * self.mu_mert_f3_3(audio_feats_norm))
return audio_feats
def forward_image(self, inputs, cache_size=10, cache_t=20, cache_weight=0.5):
outputs = []
outputs_weights = []
for input_type, (input, input_weight) in inputs.items():
outputs.append(F.normalize(self.encode_image(input), dim=-1))
outputs_weights.append(input_weight)
outputs_weights = [x / (sum(outputs_weights) + 1e-6) for x in outputs_weights]
image_feats = sum([output * output_weight for output, output_weight in zip(outputs, outputs_weights)])
device = image_feats.device
if self.knn:
image_feats_ori = image_feats
sims, indices = self.index.search(image_feats.cpu(), int(cache_size))
B = sims.shape[0]
prototypes = [self.index.reconstruct(x) for x in indices.reshape(-1, ).tolist()]
prototypes = np.vstack(prototypes).reshape(B, int(cache_size), -1) # [N, top_k, 1024]
sims = torch.tensor(sims, device=device)
prototypes = torch.tensor(prototypes, device=device)
sims = (sims * cache_t).softmax(dim=-1)
image_feats = sims @ prototypes
image_feats = image_feats / image_feats.norm(dim=-1, keepdim=True)
image_feats = (1 - cache_weight) * image_feats_ori + cache_weight * image_feats
image_feats = image_feats / image_feats.norm(dim=-1, keepdim=True)
image_feats = image_feats.unsqueeze(1) # B, 1, D
image_feats = self.iu_vit_proj(image_feats)
image_feats_norm = self.iu_vit_norm_1(image_feats)
image_feats = image_feats + self.iu_vit_f2_1(
F.silu(self.iu_vit_f1_1(image_feats_norm)) * self.iu_vit_f3_1(image_feats_norm))
image_feats_norm = self.iu_vit_norm_2(image_feats)
image_feats = image_feats + self.iu_vit_f2_2(
F.silu(self.iu_vit_f1_2(image_feats_norm)) * self.iu_vit_f3_2(image_feats_norm))
image_feats_norm = self.iu_vit_norm_3(image_feats)
image_feats = image_feats + self.iu_vit_f2_3(
F.silu(self.iu_vit_f1_3(image_feats_norm)) * self.iu_vit_f3_3(image_feats_norm))
return image_feats
def forward_video(self, inputs, cache_size=10, cache_t=20, cache_weight=0.5):
outputs = []
outputs_weights = []
for input_type, (input, input_weight) in inputs.items():
outputs.append(F.normalize(self.encode_video(input), dim=-1))
outputs_weights.append(input_weight)
outputs_weights = [x / (sum(outputs_weights) + 1e-6) for x in outputs_weights]
video_feats = sum([output * output_weight for output, output_weight in zip(outputs, outputs_weights)])
device = video_feats.device
if self.knn:
video_feats_ori = video_feats
sims, indices = self.index.search(video_feats.cpu(), int(cache_size))
B = sims.shape[0]
prototypes = [self.index.reconstruct(x) for x in indices.reshape(-1, ).tolist()]
prototypes = np.vstack(prototypes).reshape(B, int(cache_size), -1) # [N, top_k, 1024]
sims = torch.tensor(sims, device=device)
prototypes = torch.tensor(prototypes, device=device)
sims = (sims * cache_t).softmax(dim=-1)
video_feats = sims @ prototypes
video_feats = video_feats / video_feats.norm(dim=-1, keepdim=True)
video_feats = (1 - cache_weight) * video_feats_ori + cache_weight * video_feats
video_feats = video_feats / video_feats.norm(dim=-1, keepdim=True)
video_feats = video_feats.unsqueeze(1) # B, 1, D
video_feats = self.iu_vivit_proj(video_feats)
video_feats_norm = self.iu_vivit_norm_1(video_feats)
video_feats = video_feats + self.iu_vivit_f2_1(
F.silu(self.iu_vivit_f1_1(video_feats_norm)) * self.iu_vivit_f3_1(video_feats_norm))
video_feats_norm = self.iu_vivit_norm_2(video_feats)
video_feats = video_feats + self.iu_vivit_f2_2(
F.silu(self.iu_vivit_f1_2(video_feats_norm)) * self.iu_vivit_f3_2(video_feats_norm))
video_feats_norm = self.iu_vivit_norm_3(video_feats)
video_feats = video_feats + self.iu_vivit_f2_3(
F.silu(self.iu_vivit_f1_3(video_feats_norm)) * self.iu_vivit_f3_3(video_feats_norm))
return video_feats
@torch.inference_mode()
def forward_inference(self, tokens, start_pos: int, audio_feats=None, image_feats=None, video_feats=None):
_bsz, seqlen = tokens.shape
h = self.llama.tok_embeddings(tokens).to("cuda:0")
freqs_cis = self.llama.freqs_cis.to("cuda:0")
freqs_cis = freqs_cis[start_pos:start_pos + seqlen]
feats = torch.zeros((1, 1, 4096)).to("cuda:0")
if audio_feats is not None:
feats += audio_feats
if video_feats is not None:
feats += video_feats
if image_feats is not None:
feats += image_feats
mask = None
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device="cuda:0")
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
music_output_embedding = []
for layer in self.llama.layers[:-1 * self.query_layer]:
h = layer(h, 0, freqs_cis, mask)
music_output_embedding.append(h)
prefix_query = self.prefix_query.weight.reshape(self.query_layer, 1, 4096).unsqueeze(1)
prefix_index = 0
for layer in self.llama.layers[-1 * self.query_layer:]:
h = layer(h, 0, freqs_cis, mask, feats + prefix_query[prefix_index])
prefix_index = prefix_index + 1
h = self.llama.norm(h)
output = self.llama.output(h[:, -1, :])
return output.float(), torch.cat(music_output_embedding[-1:], dim=1)
def forward(self, tokens, labels, audios=None, imgs=None, videos=None, music_caption=None):
feats = torch.zeros((1, 1, 4096)).to(self.device)
if audios is not None:
feats += self.forward_audio({'Audio': [audios, 1]})
if videos is not None:
feats += self.forward_video({'Video': [videos, 1]})
if imgs is not None:
feats += self.forward_image({'Image': [imgs, 1]})
_bsz, seqlen = tokens.shape
h = self.llama.tok_embeddings(tokens.to(self.device))
freqs_cis = self.llama.freqs_cis.to(h.device)
freqs_cis = freqs_cis[:seqlen]
mask = None
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=h.device)
mask = torch.triu(mask, diagonal=0 + 1).type_as(h)
for layer in self.llama.layers[:-1 * self.query_layer]:
h = layer(h, 0, freqs_cis, mask)
prefix_query = self.prefix_query.weight.reshape(self.query_layer, 1, 4096).unsqueeze(1)
prefix_index = 0
for layer in self.llama.layers[-1 * self.query_layer:]:
h = layer(h, 0, freqs_cis, mask, feats + prefix_query[prefix_index])
prefix_index = prefix_index + 1
final_hidden = h
h = self.llama.norm(h)
output = self.llama.output(h)
output = output[:, :-1, :]
labels = labels[:, 1:]
if labels.sum() == 0:
c_loss = output.mean() * 0
else:
assert self.llama.vocab_size == 32000 + self.model_args.num_gen_audio_tokens, self.llama.vocab_size
c_loss = self.criterion(output.reshape(-1, self.llama.vocab_size), labels.flatten().to(self.device))
if music_caption is not None and any([mc != '' for mc in music_caption]):
if not all([i in output for i in range(32000, 32008)]):
c_loss += 100
if self.music_decoder == "audioldm2":
prompt_embeds, generated_prompt_embeds = self.generation_model(prompt=list(music_caption),
guidance_scale=1,
return_prompts_only=True)
prompt_embeds = prompt_embeds.reshape(prompt_embeds.shape[0], -1)
generated_prompt_embeds = generated_prompt_embeds.reshape(generated_prompt_embeds.shape[0], -1)
out_embed = torch.cat([prompt_embeds, generated_prompt_embeds], dim=1)
out_embed = 10 * out_embed.view(out_embed.size(0), 1, out_embed.size(1)).to(self.device)
else:
gen_inputs = self.generation_processor(text=music_caption, padding='max_length',
max_length=128, truncation=True, return_tensors="pt").to(
self.device)
out_embed = 10 * self.generation_model.generate(**gen_inputs, guidance_scale=1, encoder_only=True)
del gen_inputs
start_pos = (labels == self.audio_tokens[0]).nonzero(as_tuple=False)[:, 1].tolist()
assert len(start_pos) != 0, (self.tokenizer.batch_decode(labels), music_caption)
hidden_states = []
hidden_embedding = []
input_embedding = []
for b, s in enumerate(start_pos):
hidden_embedding.append(final_hidden[b, s:s + self.model_args.num_gen_audio_tokens, :])
input_embedding.append(
self.llama.tok_embeddings(labels[b, s:s + self.model_args.num_gen_audio_tokens].to(self.device)))
hidden_embedding = torch.stack(hidden_embedding, dim=0).to(self.device)
input_embedding = torch.stack(input_embedding, dim=0).to(self.device)
hidden_states.append(self.output_projector(hidden_embedding, input_embedding))
embeddings = torch.stack(hidden_states, dim=-1).sum(dim=-1)
mse_loss = self.l2_loss(embeddings, out_embed)
del hidden_states, input_embedding, hidden_embedding, out_embed, embeddings
# c_loss += mse_loss
else:
if any([i in output for i in range(32000, 32008)]):
c_loss += 100
mse_loss = torch.tensor(0.0)
del feats
return c_loss, mse_loss
@torch.inference_mode()
def generate_music(self, embeddings, audio_length_in_s, music_caption):
gen_prefix = ''.join([f'[AUD{i}]' for i in range(len(self.audio_tokens))])
gen_prefx_ids = self.tokenizer(gen_prefix, add_special_tokens=False, return_tensors="pt").input_ids.to("cuda:1")
# gen_prefix_embs = self.llama.tok_embeddings(gen_prefx_ids)
if self.music_decoder == "audioldm2":
gen_emb = self.output_projector(embeddings.float().to("cuda:1"), gen_prefix_embs).squeeze(dim=0) / 10
prompt_embeds, generated_prompt_embeds = gen_emb[:, :128 * 1024], gen_emb[:, 128 * 1024:]
prompt_embeds = prompt_embeds.reshape(prompt_embeds.shape[0], 128, 1024)
generated_prompt_embeds = generated_prompt_embeds.reshape(generated_prompt_embeds.shape[0], 8, 768)
print("Generating Music...")
print(music_caption)
audio_outputs = self.generation_model(music_caption,
num_inference_steps=200,
num_waveforms_per_prompt=3,
negative_prompt='Low quality.',
audio_length_in_s=audio_length_in_s).audios
return audio_outputs
else:
print("Generating Music...")
gen_inputs = self.generation_processor(text=music_caption, return_tensors="pt").to("cuda:1")
#gen_emb = self.generation_model.generate(**gen_inputs, guidance_scale=3.5, encoder_only=True)
audio_outputs = self.generation_model.generate(**gen_inputs, guidance_scale=3.5,
max_new_tokens=int(256 / 5 * audio_length_in_s))
#encoder_outputs=(gen_emb,))
return audio_outputs[0][0].cpu().detach().numpy()
@torch.inference_mode()
def generate(
self,
prompts,
audios=None,
imgs=None,
videos=None,
max_gen_len: int = 100,
temperature: float = 0.1,
top_p: float = 0.75,
cache_size=10,
cache_t=20,
cache_weight=0.5,
audio_length_in_s=10
):
bsz = len(prompts)
params = self.llama.params
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
with torch.cuda.amp.autocast():
if audios is not None:
audio_feats = self.forward_audio({'Audio': [[audios], 1]}, cache_size, cache_t, cache_weight)
else:
audio_feats = None
if videos is not None:
video_feats = self.forward_video({'Video': [[videos], 1]}, cache_size, cache_t, cache_weight)
else:
video_feats = None
if imgs is not None:
image_feats = self.forward_image({'Image': [[imgs], 1]}, cache_size, cache_t, cache_weight)
else:
image_feats = None
if isinstance(prompts[0], str):
prompts = [self.tokenizer(x).input_ids[:, 1:] for x in prompts]
min_prompt_size = min([len(t) for t in prompts])
max_prompt_size = max([len(t) for t in prompts])
total_len = min(params.max_seq_len, max_gen_len + max_prompt_size)
tokens = torch.full((bsz, total_len), 0).to("cuda:0").long()
for k, t in enumerate(prompts):
tokens[k, : len(t)] = torch.tensor(t).to("cuda:0").long()
input_text_mask = tokens != 0
start_pos = min_prompt_size
prev_pos = 0
music_output_embeddings = []
start_gather = 0
for cur_pos in range(start_pos, total_len):
with torch.cuda.amp.autocast():
logits, music_output_embedding = self.forward_inference(tokens[:, prev_pos:cur_pos], prev_pos,
audio_feats, image_feats, video_feats)
if temperature > 0:
probs = torch.softmax(logits / temperature, dim=-1)
next_token = sample_top_p(probs, top_p)
else:
next_token = torch.argmax(logits, dim=-1)
next_token = next_token.reshape(-1)
next_token = torch.where(
input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
)
tokens[:, cur_pos] = next_token
if next_token[0] == self.audio_tokens[start_gather]:
if start_gather == 0:
music_output_embeddings = []
music_output_embeddings.append(music_output_embedding[:, -1:, :])
start_gather += 1
if start_gather >= len(self.audio_tokens):
start_gather = 0
# trick: early stop if bsz==1
if bsz == 1 and self.tokenizer.decode(tokens[0, cur_pos - 2:cur_pos + 1]) == "\n###":
break
# prev_pos = cur_pos
decoded = []
for i, t in enumerate(tokens.tolist()):
# cut to max gen len
t = t[len(prompts[i]): len(prompts[i]) + max_gen_len]
# cut to eos tok if any
try:
t = t[: t.index(13)]
except ValueError:
pass
decoded.append(self.tokenizer.decode(t))
if len(music_output_embeddings) == len(self.audio_tokens):
music_output_embeddings = torch.cat(music_output_embeddings, dim=1)
return [decoded[0], {'aud': [self.generate_music(music_output_embeddings, audio_length_in_s, decoded[0])]}]
return [decoded[0]]
def load(model_path, llama_dir, mert_path="m-a-p/MERT-v1-330M", device="cuda" if torch.cuda.is_available() else "cpu",
knn=False, knn_dir="./ckpts", llama_type="7B", stage=3):
llama_ckpt_dir = os.path.join(llama_dir, llama_type)
llama_tokenzier_path = llama_dir
# load M2UGen weights and model_cfg
print(f'Loading LLaMA-Adapter from {model_path}')
adapter_ckpt = torch.load(model_path, map_location='cpu')
model_cfg = adapter_ckpt.get('config', {})
# The model files for MERT can be downloaded here in case of network issues:
# https://huggingface.co/m-a-p/MERT-v1-330M
# And set the MERT argument to directory with the model files
model = M2UGen(
llama_ckpt_dir, llama_tokenzier_path, mert_path, knn=knn, knn_dir=knn_dir, stage=stage)
load_result = model.load_state_dict(adapter_ckpt['model'], strict=False)
assert len(load_result.unexpected_keys) == 0, f"Unexpected keys: {load_result.unexpected_keys}"
return model.to(device)
|