Spaces:
Runtime error
Runtime error
import torch.cuda | |
import gradio as gr | |
import mdtex2html | |
import tempfile | |
from PIL import Image | |
import scipy | |
from llama.m2ugen import M2UGen | |
import llama | |
import numpy as np | |
import os | |
import torch | |
import torchaudio | |
import torchvision.transforms as transforms | |
import av | |
import subprocess | |
import librosa | |
args = {"model": "./ckpts/checkpoint.pth", "llama_type": "7B", "llama_dir": "./ckpts/LLaMA-2", | |
"mert_path": "m-a-p/MERT-v1-330M", "vit_path": "google/vit-base-patch16-224", "vivit_path": "google/vivit-b-16x2-kinetics400", | |
"music_decoder": "musicgen", "music_decoder_path": "facebook/musicgen-medium"} | |
class dotdict(dict): | |
"""dot.notation access to dictionary attributes""" | |
__getattr__ = dict.get | |
__setattr__ = dict.__setitem__ | |
__delattr__ = dict.__delitem__ | |
args = dotdict(args) | |
generated_audio_files = [] | |
llama_type = args.llama_type | |
llama_ckpt_dir = os.path.join(args.llama_dir, llama_type) | |
llama_tokenzier_path = args.llama_dir | |
model = M2UGen(llama_ckpt_dir, llama_tokenzier_path, args, knn=False, stage=None, load_llama=False) | |
print("Loading Model Checkpoint") | |
checkpoint = torch.load(args.model, map_location='cpu') | |
new_ckpt = {} | |
for key, value in checkpoint['model'].items(): | |
if "generation_model" in key: | |
continue | |
key = key.replace("module.", "") | |
new_ckpt[key] = value | |
load_result = model.load_state_dict(new_ckpt, strict=False) | |
assert len(load_result.unexpected_keys) == 0, f"Unexpected keys: {load_result.unexpected_keys}" | |
model.eval() | |
transform = transforms.Compose( | |
[transforms.ToTensor(), transforms.Lambda(lambda x: x.repeat(3, 1, 1) if x.size(0) == 1 else x)]) | |
def postprocess(self, y): | |
if y is None: | |
return [] | |
for i, (message, response) in enumerate(y): | |
y[i] = ( | |
None if message is None else mdtex2html.convert((message)), | |
None if response is None else mdtex2html.convert(response), | |
) | |
return y | |
gr.Chatbot.postprocess = postprocess | |
def parse_text(text, image_path, video_path, audio_path): | |
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/""" | |
outputs = text | |
lines = text.split("\n") | |
lines = [line for line in lines if line != ""] | |
count = 0 | |
for i, line in enumerate(lines): | |
if "```" in line: | |
count += 1 | |
items = line.split('`') | |
if count % 2 == 1: | |
lines[i] = f'<pre><code class="language-{items[-1]}">' | |
else: | |
lines[i] = f'<br></code></pre>' | |
else: | |
if i > 0: | |
if count % 2 == 1: | |
line = line.replace("`", "\`") | |
line = line.replace("<", "<") | |
line = line.replace(">", ">") | |
line = line.replace(" ", " ") | |
line = line.replace("*", "*") | |
line = line.replace("_", "_") | |
line = line.replace("-", "-") | |
line = line.replace(".", ".") | |
line = line.replace("!", "!") | |
line = line.replace("(", "(") | |
line = line.replace(")", ")") | |
line = line.replace("$", "$") | |
lines[i] = "<br>" + line | |
text = "".join(lines) + "<br>" | |
if image_path is not None: | |
text += f'<img src="./file={image_path}" style="display: inline-block;"><br>' | |
outputs = f'<Image>{image_path}</Image> ' + outputs | |
if video_path is not None: | |
text += f' <video controls playsinline height="320" width="240" style="display: inline-block;" src="./file={video_path}"></video6><br>' | |
outputs = f'<Video>{video_path}</Video> ' + outputs | |
if audio_path is not None: | |
text += f'<audio controls playsinline><source src="./file={audio_path}" type="audio/wav"></audio><br>' | |
outputs = f'<Audio>{audio_path}</Audio> ' + outputs | |
# text = text[::-1].replace(">rb<", "", 1)[::-1] | |
text = text[:-len("<br>")].rstrip() if text.endswith("<br>") else text | |
return text, outputs | |
def save_audio_to_local(audio, sec): | |
global generated_audio_files | |
if not os.path.exists('temp'): | |
os.mkdir('temp') | |
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.wav') | |
if args.music_decoder == "audioldm2": | |
scipy.io.wavfile.write(filename, rate=16000, data=audio[0]) | |
else: | |
scipy.io.wavfile.write(filename, rate=model.generation_model.config.audio_encoder.sampling_rate, data=audio) | |
generated_audio_files.append(filename) | |
return filename | |
def parse_reponse(model_outputs, audio_length_in_s): | |
response = '' | |
text_outputs = [] | |
for output_i, p in enumerate(model_outputs): | |
if isinstance(p, str): | |
response += p.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '') | |
response += '<br>' | |
text_outputs.append(p.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')) | |
elif 'aud' in p.keys(): | |
_temp_output = '' | |
for idx, m in enumerate(p['aud']): | |
if isinstance(m, str): | |
response += m.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '') | |
response += '<br>' | |
_temp_output += m.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '') | |
else: | |
filename = save_audio_to_local(m, audio_length_in_s) | |
print(filename) | |
_temp_output = f'<Audio>{filename}</Audio> ' + _temp_output | |
response += f'<audio controls playsinline><source src="./file={filename}" type="audio/wav"></audio>' | |
text_outputs.append(_temp_output) | |
else: | |
pass | |
response = response[:-len("<br>")].rstrip() if response.endswith("<br>") else response | |
return response, text_outputs | |
def reset_user_input(): | |
return gr.update(value='') | |
def reset_dialog(): | |
return [], [] | |
def reset_state(): | |
global generated_audio_files | |
generated_audio_files = [] | |
return None, None, None, None, [], [], [] | |
def upload_image(conversation, chat_history, image_input): | |
input_image = Image.open(image_input.name).resize( | |
(224, 224)).convert('RGB') | |
input_image.save(image_input.name) # Overwrite with smaller image. | |
conversation += [(f'<img src="./file={image_input.name}" style="display: inline-block;">', "")] | |
return conversation, chat_history + [input_image, ""] | |
def read_video_pyav(container, indices): | |
frames = [] | |
container.seek(0) | |
for i, frame in enumerate(container.decode(video=0)): | |
frames.append(frame) | |
chosen_frames = [] | |
for i in indices: | |
chosen_frames.append(frames[i]) | |
return np.stack([x.to_ndarray(format="rgb24") for x in chosen_frames]) | |
def sample_frame_indices(clip_len, frame_sample_rate, seg_len): | |
converted_len = int(clip_len * frame_sample_rate) | |
if converted_len > seg_len: | |
converted_len = 0 | |
end_idx = np.random.randint(converted_len, seg_len) | |
start_idx = end_idx - converted_len | |
indices = np.linspace(start_idx, end_idx, num=clip_len) | |
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) | |
return indices | |
def get_video_length(filename): | |
print("Getting Video Length") | |
result = subprocess.run(["ffprobe", "-v", "error", "-show_entries", | |
"format=duration", "-of", | |
"default=noprint_wrappers=1:nokey=1", filename], | |
stdout=subprocess.PIPE, | |
stderr=subprocess.STDOUT) | |
return int(round(float(result.stdout))) | |
def get_audio_length(filename): | |
return int(round(librosa.get_duration(path=filename))) | |
def predict( | |
prompt_input, | |
image_path, | |
audio_path, | |
video_path, | |
chatbot, | |
top_p, | |
temperature, | |
history, | |
modality_cache, | |
audio_length_in_s): | |
global generated_audio_files | |
prompts = [llama.format_prompt(prompt_input)] | |
prompts = [model.tokenizer(x).input_ids for x in prompts] | |
print(image_path, audio_path, video_path) | |
image, audio, video = None, None, None | |
if image_path is not None: | |
image = transform(Image.open(image_path)) | |
if audio_path is not None: | |
sample_rate = 24000 | |
waveform, sr = torchaudio.load(audio_path) | |
if sample_rate != sr: | |
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate) | |
audio = torch.mean(waveform, 0) | |
if video_path is not None: | |
print("Opening Video") | |
container = av.open(video_path) | |
indices = sample_frame_indices(clip_len=32, frame_sample_rate=1, seg_len=container.streams.video[0].frames) | |
video = read_video_pyav(container=container, indices=indices) | |
if len(generated_audio_files) != 0: | |
audio_length_in_s = get_audio_length(generated_audio_files[-1]) | |
sample_rate = 24000 | |
waveform, sr = torchaudio.load(generated_audio_files[-1]) | |
if sample_rate != sr: | |
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate) | |
audio = torch.mean(waveform, 0) | |
audio_length_in_s = int(len(audio)//sample_rate) | |
print(f"Audio Length: {audio_length_in_s}") | |
if video_path is not None: | |
audio_length_in_s = get_video_length(video_path) | |
print(f"Video Length: {audio_length_in_s}") | |
if audio_path is not None: | |
audio_length_in_s = get_audio_length(audio_path) | |
generated_audio_files.append(audio_path) | |
print(f"Audio Length: {audio_length_in_s}") | |
print(image, video, audio) | |
response = model.generate(prompts, audio, image, video, 200, temperature, top_p, | |
audio_length_in_s=audio_length_in_s) | |
print(response) | |
response_chat, response_outputs = parse_reponse(response, audio_length_in_s) | |
print('text_outputs: ', response_outputs) | |
user_chat, user_outputs = parse_text(prompt_input, image_path, video_path, audio_path) | |
chatbot.append((user_chat, response_chat)) | |
history.append((user_outputs, ''.join(response_outputs).replace('\n###', ''))) | |
return chatbot, history, modality_cache, None, None, None, | |
with gr.Blocks() as demo: | |
gr.HTML(""" | |
<h1 align="center" style=" display: flex; flex-direction: row; justify-content: center; font-size: 25pt; "><img src='./file=bot.png' width="50" height="50" style="margin-right: 10px;">M<sup style="line-height: 200%; font-size: 60%">2</sup>UGen</h1> | |
<h3>This is the demo page of M<sup>2</sup>UGen, a Multimodal LLM capable of Music Understanding and Generation!</h3> | |
<div style="display: flex;"><a href='https://arxiv.org/pdf/2311.11255.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=0.7, min_width=500): | |
with gr.Row(): | |
chatbot = gr.Chatbot(label='M2UGen Chatbot', avatar_images=( | |
(os.path.join(os.path.dirname(__file__), 'user.png')), | |
(os.path.join(os.path.dirname(__file__), "bot.png"))), height=440) | |
with gr.Tab("User Input"): | |
with gr.Row(scale=3): | |
user_input = gr.Textbox(label="Text", placeholder="Key in something here...", lines=3) | |
with gr.Row(scale=3): | |
with gr.Column(scale=1): | |
# image_btn = gr.UploadButton("🖼️ Upload Image", file_types=["image"]) | |
image_path = gr.Image(type="filepath", | |
label="Image") # .style(height=200) # <PIL.Image.Image image mode=RGB size=512x512 at 0x7F6E06738D90> | |
with gr.Column(scale=1): | |
audio_path = gr.Audio(type='filepath') # .style(height=200) | |
with gr.Column(scale=1): | |
video_path = gr.Video() # .style(height=200) # , value=None, interactive=True | |
with gr.Column(scale=0.3, min_width=300): | |
with gr.Group(): | |
with gr.Accordion('Text Advanced Options', open=True): | |
top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True) | |
temperature = gr.Slider(0, 1, value=0.6, step=0.01, label="Temperature", interactive=True) | |
with gr.Accordion('Audio Advanced Options', open=False): | |
audio_length_in_s = gr.Slider(5, 30, value=30, step=1, label="The audio length in seconds", | |
interactive=True) | |
with gr.Tab("Operation"): | |
with gr.Row(scale=1): | |
submitBtn = gr.Button(value="Submit & Run", variant="primary") | |
with gr.Row(scale=1): | |
emptyBtn = gr.Button("Clear History") | |
history = gr.State([]) | |
modality_cache = gr.State([]) | |
submitBtn.click( | |
predict, [ | |
user_input, | |
image_path, | |
audio_path, | |
video_path, | |
chatbot, | |
top_p, | |
temperature, | |
history, | |
modality_cache, | |
audio_length_in_s | |
], [ | |
chatbot, | |
history, | |
modality_cache, | |
image_path, | |
audio_path, | |
video_path | |
], | |
show_progress=True | |
) | |
submitBtn.click(reset_user_input, [], [user_input]) | |
emptyBtn.click(reset_state, outputs=[ | |
image_path, | |
audio_path, | |
video_path, | |
chatbot, | |
history, | |
modality_cache | |
], show_progress=True) | |
demo.queue().launch(share=True, inbrowser=True, server_name='0.0.0.0', server_port=24000) | |