M2UGen330-Demo / app.py
crypto-code's picture
Update app.py
38d0ec4
raw
history blame
13.8 kB
import torch.cuda
import gradio as gr
import mdtex2html
import tempfile
from PIL import Image
import scipy
from llama.m2ugen import M2UGen
import llama
import numpy as np
import os
import torch
import torchaudio
import torchvision.transforms as transforms
import av
import subprocess
import librosa
args = {"model": "./ckpts/checkpoint.pth", "llama_type": "7B", "llama_dir": "./ckpts/LLaMA-2",
"mert_path": "m-a-p/MERT-v1-330M", "vit_path": "google/vit-base-patch16-224", "vivit_path": "google/vivit-b-16x2-kinetics400",
"music_decoder": "musicgen", "music_decoder_path": "facebook/musicgen-medium"}
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
args = dotdict(args)
generated_audio_files = []
llama_type = args.llama_type
llama_ckpt_dir = os.path.join(args.llama_dir, llama_type)
llama_tokenzier_path = args.llama_dir
model = M2UGen(llama_ckpt_dir, llama_tokenzier_path, args, knn=False, stage=None, load_llama=False)
print("Loading Model Checkpoint")
checkpoint = torch.load(args.model, map_location='cpu')
new_ckpt = {}
for key, value in checkpoint['model'].items():
if "generation_model" in key:
continue
key = key.replace("module.", "")
new_ckpt[key] = value
load_result = model.load_state_dict(new_ckpt, strict=False)
assert len(load_result.unexpected_keys) == 0, f"Unexpected keys: {load_result.unexpected_keys}"
model.eval()
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Lambda(lambda x: x.repeat(3, 1, 1) if x.size(0) == 1 else x)])
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text, image_path, video_path, audio_path):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
outputs = text
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>" + line
text = "".join(lines) + "<br>"
if image_path is not None:
text += f'<img src="./file={image_path}" style="display: inline-block;"><br>'
outputs = f'<Image>{image_path}</Image> ' + outputs
if video_path is not None:
text += f' <video controls playsinline height="320" width="240" style="display: inline-block;" src="./file={video_path}"></video6><br>'
outputs = f'<Video>{video_path}</Video> ' + outputs
if audio_path is not None:
text += f'<audio controls playsinline><source src="./file={audio_path}" type="audio/wav"></audio><br>'
outputs = f'<Audio>{audio_path}</Audio> ' + outputs
# text = text[::-1].replace(">rb<", "", 1)[::-1]
text = text[:-len("<br>")].rstrip() if text.endswith("<br>") else text
return text, outputs
def save_audio_to_local(audio, sec):
global generated_audio_files
if not os.path.exists('temp'):
os.mkdir('temp')
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.wav')
if args.music_decoder == "audioldm2":
scipy.io.wavfile.write(filename, rate=16000, data=audio[0])
else:
scipy.io.wavfile.write(filename, rate=model.generation_model.config.audio_encoder.sampling_rate, data=audio)
generated_audio_files.append(filename)
return filename
def parse_reponse(model_outputs, audio_length_in_s):
response = ''
text_outputs = []
for output_i, p in enumerate(model_outputs):
if isinstance(p, str):
response += p.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')
response += '<br>'
text_outputs.append(p.replace(' '.join([f'[AUD{i}]' for i in range(8)]), ''))
elif 'aud' in p.keys():
_temp_output = ''
for idx, m in enumerate(p['aud']):
if isinstance(m, str):
response += m.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')
response += '<br>'
_temp_output += m.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')
else:
filename = save_audio_to_local(m, audio_length_in_s)
print(filename)
_temp_output = f'<Audio>{filename}</Audio> ' + _temp_output
response += f'<audio controls playsinline><source src="./file={filename}" type="audio/wav"></audio>'
text_outputs.append(_temp_output)
else:
pass
response = response[:-len("<br>")].rstrip() if response.endswith("<br>") else response
return response, text_outputs
def reset_user_input():
return gr.update(value='')
def reset_dialog():
return [], []
def reset_state():
global generated_audio_files
generated_audio_files = []
return None, None, None, None, [], [], []
def upload_image(conversation, chat_history, image_input):
input_image = Image.open(image_input.name).resize(
(224, 224)).convert('RGB')
input_image.save(image_input.name) # Overwrite with smaller image.
conversation += [(f'<img src="./file={image_input.name}" style="display: inline-block;">', "")]
return conversation, chat_history + [input_image, ""]
def read_video_pyav(container, indices):
frames = []
container.seek(0)
for i, frame in enumerate(container.decode(video=0)):
frames.append(frame)
chosen_frames = []
for i in indices:
chosen_frames.append(frames[i])
return np.stack([x.to_ndarray(format="rgb24") for x in chosen_frames])
def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
converted_len = int(clip_len * frame_sample_rate)
if converted_len > seg_len:
converted_len = 0
end_idx = np.random.randint(converted_len, seg_len)
start_idx = end_idx - converted_len
indices = np.linspace(start_idx, end_idx, num=clip_len)
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
return indices
def get_video_length(filename):
print("Getting Video Length")
result = subprocess.run(["ffprobe", "-v", "error", "-show_entries",
"format=duration", "-of",
"default=noprint_wrappers=1:nokey=1", filename],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
return int(round(float(result.stdout)))
def get_audio_length(filename):
return int(round(librosa.get_duration(path=filename)))
def predict(
prompt_input,
image_path,
audio_path,
video_path,
chatbot,
top_p,
temperature,
history,
modality_cache,
audio_length_in_s):
global generated_audio_files
prompts = [llama.format_prompt(prompt_input)]
prompts = [model.tokenizer(x).input_ids for x in prompts]
print(image_path, audio_path, video_path)
image, audio, video = None, None, None
if image_path is not None:
image = transform(Image.open(image_path))
if audio_path is not None:
sample_rate = 24000
waveform, sr = torchaudio.load(audio_path)
if sample_rate != sr:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate)
audio = torch.mean(waveform, 0)
if video_path is not None:
print("Opening Video")
container = av.open(video_path)
indices = sample_frame_indices(clip_len=32, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
video = read_video_pyav(container=container, indices=indices)
if len(generated_audio_files) != 0:
audio_length_in_s = get_audio_length(generated_audio_files[-1])
sample_rate = 24000
waveform, sr = torchaudio.load(generated_audio_files[-1])
if sample_rate != sr:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate)
audio = torch.mean(waveform, 0)
audio_length_in_s = int(len(audio)//sample_rate)
print(f"Audio Length: {audio_length_in_s}")
if video_path is not None:
audio_length_in_s = get_video_length(video_path)
print(f"Video Length: {audio_length_in_s}")
if audio_path is not None:
audio_length_in_s = get_audio_length(audio_path)
generated_audio_files.append(audio_path)
print(f"Audio Length: {audio_length_in_s}")
print(image, video, audio)
response = model.generate(prompts, audio, image, video, 200, temperature, top_p,
audio_length_in_s=audio_length_in_s)
print(response)
response_chat, response_outputs = parse_reponse(response, audio_length_in_s)
print('text_outputs: ', response_outputs)
user_chat, user_outputs = parse_text(prompt_input, image_path, video_path, audio_path)
chatbot.append((user_chat, response_chat))
history.append((user_outputs, ''.join(response_outputs).replace('\n###', '')))
return chatbot, history, modality_cache, None, None, None,
with gr.Blocks() as demo:
gr.HTML("""
<h1 align="center" style=" display: flex; flex-direction: row; justify-content: center; font-size: 25pt; "><img src='./file=bot.png' width="50" height="50" style="margin-right: 10px;">M<sup style="line-height: 200%; font-size: 60%">2</sup>UGen</h1>
<h3>This is the demo page of M<sup>2</sup>UGen, a Multimodal LLM capable of Music Understanding and Generation!</h3>
<div style="display: flex;"><a href='https://arxiv.org/pdf/2311.11255.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
""")
with gr.Row():
with gr.Column(scale=0.7, min_width=500):
with gr.Row():
chatbot = gr.Chatbot(label='M2UGen Chatbot', avatar_images=(
(os.path.join(os.path.dirname(__file__), 'user.png')),
(os.path.join(os.path.dirname(__file__), "bot.png"))), height=440)
with gr.Tab("User Input"):
with gr.Row(scale=3):
user_input = gr.Textbox(label="Text", placeholder="Key in something here...", lines=3)
with gr.Row(scale=3):
with gr.Column(scale=1):
# image_btn = gr.UploadButton("🖼️ Upload Image", file_types=["image"])
image_path = gr.Image(type="filepath",
label="Image") # .style(height=200) # <PIL.Image.Image image mode=RGB size=512x512 at 0x7F6E06738D90>
with gr.Column(scale=1):
audio_path = gr.Audio(type='filepath') # .style(height=200)
with gr.Column(scale=1):
video_path = gr.Video() # .style(height=200) # , value=None, interactive=True
with gr.Column(scale=0.3, min_width=300):
with gr.Group():
with gr.Accordion('Text Advanced Options', open=True):
top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.6, step=0.01, label="Temperature", interactive=True)
with gr.Accordion('Audio Advanced Options', open=False):
audio_length_in_s = gr.Slider(5, 30, value=30, step=1, label="The audio length in seconds",
interactive=True)
with gr.Tab("Operation"):
with gr.Row(scale=1):
submitBtn = gr.Button(value="Submit & Run", variant="primary")
with gr.Row(scale=1):
emptyBtn = gr.Button("Clear History")
history = gr.State([])
modality_cache = gr.State([])
submitBtn.click(
predict, [
user_input,
image_path,
audio_path,
video_path,
chatbot,
top_p,
temperature,
history,
modality_cache,
audio_length_in_s
], [
chatbot,
history,
modality_cache,
image_path,
audio_path,
video_path
],
show_progress=True
)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[
image_path,
audio_path,
video_path,
chatbot,
history,
modality_cache
], show_progress=True)
demo.queue().launch(share=True, inbrowser=True, server_name='0.0.0.0', server_port=24000)