Spaces:
Sleeping
Sleeping
direct input
Browse files
app.py
CHANGED
@@ -45,15 +45,8 @@ with open('./README.md', 'r') as f:
|
|
45 |
df_init = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
|
46 |
transcription_df = gr.DataFrame(value=df_init, label="Output Dataframe", row_count=(
|
47 |
0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate')
|
48 |
-
# outputs = [gr.components.Textbox()]
|
49 |
outputs = transcription_df
|
50 |
|
51 |
-
df_init_live = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
|
52 |
-
transcription_df_live = gr.DataFrame(value=df_init_live, label="Output Dataframe", row_count=(
|
53 |
-
0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate')
|
54 |
-
outputs_live = transcription_df_live
|
55 |
-
|
56 |
-
# Load the model and the corresponding preprocessor config
|
57 |
# model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True)
|
58 |
# processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True)
|
59 |
model = modeling_MERT.MERTModel.from_pretrained("./MERT-v1-95M")
|
@@ -112,7 +105,6 @@ for task in TASKS:
|
|
112 |
|
113 |
model.to(device)
|
114 |
|
115 |
-
|
116 |
def model_inference(inputs):
|
117 |
waveform, sample_rate = torchaudio.load(inputs)
|
118 |
|
@@ -176,23 +168,18 @@ def model_inference(inputs):
|
|
176 |
df = pd.DataFrame(df_objects, columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
|
177 |
return df
|
178 |
|
179 |
-
def convert_audio(inputs
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
allow_flagging="never",
|
192 |
-
title=title,
|
193 |
-
description=description,
|
194 |
-
article=article,
|
195 |
-
)
|
196 |
|
197 |
# demo.queue(concurrency_count=1, max_size=5)
|
198 |
demo.launch()
|
|
|
45 |
df_init = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
|
46 |
transcription_df = gr.DataFrame(value=df_init, label="Output Dataframe", row_count=(
|
47 |
0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate')
|
|
|
48 |
outputs = transcription_df
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
# model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True)
|
51 |
# processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True)
|
52 |
model = modeling_MERT.MERTModel.from_pretrained("./MERT-v1-95M")
|
|
|
105 |
|
106 |
model.to(device)
|
107 |
|
|
|
108 |
def model_inference(inputs):
|
109 |
waveform, sample_rate = torchaudio.load(inputs)
|
110 |
|
|
|
168 |
df = pd.DataFrame(df_objects, columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
|
169 |
return df
|
170 |
|
171 |
+
def convert_audio(inputs):
|
172 |
+
return model_inference(inputs)
|
173 |
+
|
174 |
+
demo = gr.Interface(
|
175 |
+
fn=convert_audio,
|
176 |
+
inputs=gr.Audio(source="microphone"),
|
177 |
+
outputs=outputs,
|
178 |
+
allow_flagging="never",
|
179 |
+
title=title,
|
180 |
+
description=description,
|
181 |
+
article=article,
|
182 |
+
)
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
# demo.queue(concurrency_count=1, max_size=5)
|
185 |
demo.launch()
|