TobDeBer commited on
Commit
679dd6b
·
1 Parent(s): e671e50

direct input

Browse files
Files changed (1) hide show
  1. app.py +12 -25
app.py CHANGED
@@ -45,15 +45,8 @@ with open('./README.md', 'r') as f:
45
  df_init = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
46
  transcription_df = gr.DataFrame(value=df_init, label="Output Dataframe", row_count=(
47
  0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate')
48
- # outputs = [gr.components.Textbox()]
49
  outputs = transcription_df
50
 
51
- df_init_live = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
52
- transcription_df_live = gr.DataFrame(value=df_init_live, label="Output Dataframe", row_count=(
53
- 0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate')
54
- outputs_live = transcription_df_live
55
-
56
- # Load the model and the corresponding preprocessor config
57
  # model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True)
58
  # processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True)
59
  model = modeling_MERT.MERTModel.from_pretrained("./MERT-v1-95M")
@@ -112,7 +105,6 @@ for task in TASKS:
112
 
113
  model.to(device)
114
 
115
-
116
  def model_inference(inputs):
117
  waveform, sample_rate = torchaudio.load(inputs)
118
 
@@ -176,23 +168,18 @@ def model_inference(inputs):
176
  df = pd.DataFrame(df_objects, columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
177
  return df
178
 
179
- def convert_audio(inputs, microphone):
180
- if (microphone is not None):
181
- inputs = microphone
182
- df = model_inference(inputs)
183
- return df
184
-
185
- demo = gr.Blocks()
186
- with demo:
187
- gr.Interface(
188
- fn=convert_audio,
189
- inputs=gr.Audio(source="microphone"),
190
- outputs=outputs,
191
- allow_flagging="never",
192
- title=title,
193
- description=description,
194
- article=article,
195
- )
196
 
197
  # demo.queue(concurrency_count=1, max_size=5)
198
  demo.launch()
 
45
  df_init = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
46
  transcription_df = gr.DataFrame(value=df_init, label="Output Dataframe", row_count=(
47
  0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate')
 
48
  outputs = transcription_df
49
 
 
 
 
 
 
 
50
  # model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True)
51
  # processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True)
52
  model = modeling_MERT.MERTModel.from_pretrained("./MERT-v1-95M")
 
105
 
106
  model.to(device)
107
 
 
108
  def model_inference(inputs):
109
  waveform, sample_rate = torchaudio.load(inputs)
110
 
 
168
  df = pd.DataFrame(df_objects, columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
169
  return df
170
 
171
+ def convert_audio(inputs):
172
+ return model_inference(inputs)
173
+
174
+ demo = gr.Interface(
175
+ fn=convert_audio,
176
+ inputs=gr.Audio(source="microphone"),
177
+ outputs=outputs,
178
+ allow_flagging="never",
179
+ title=title,
180
+ description=description,
181
+ article=article,
182
+ )
 
 
 
 
 
183
 
184
  # demo.queue(concurrency_count=1, max_size=5)
185
  demo.launch()