import gradio as gr

from transformers import Wav2Vec2FeatureExtractor
from transformers import AutoModel
import torch
from torch import nn
import torchaudio
import torchaudio.transforms as T
import logging

import json
import os
import re

import pandas as pd
import librosa

import importlib 
modeling_MERT = importlib.import_module("MERT-v1-95M.modeling_MERT")

from Prediction_Head.MTGGenre_head import MLPProberBase 


logger = logging.getLogger("MERT-v1-95M-app")
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter(
    "%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
ch.setFormatter(formatter)
logger.addHandler(ch)

title = "One Model for All Music Understanding Tasks"
description = "An example of using the [MERT-v1-95M](https://huggingface.co/m-a-p/MERT-v1-95M) model as backbone to conduct multiple music understanding tasks with the universal representation. \n Due the hardware limitation of the machine hosting this demo (2 CPU and 16GB RAM) only the first 4 seconds of audio are used!"
with open('./README.md', 'r') as f:
    # skip the header
    header_count = 0
    for line in f:
        if '---' in line:
            header_count += 1
        if header_count >= 2:
            break
    # read the rest conent
    article = f.read()
    
df_init = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
transcription_df = gr.DataFrame(value=df_init, label="Output Dataframe", row_count=(
    0, "dynamic"), wrap=True)
outputs = transcription_df

# model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True)
# processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True)
model = modeling_MERT.MERTModel.from_pretrained("./MERT-v1-95M")
processor = Wav2Vec2FeatureExtractor.from_pretrained("./MERT-v1-95M")

device = 'cuda' if torch.cuda.is_available() else 'cpu'

MERT_BEST_LAYER_IDX = {
    'EMO': 5,
    'GS': 8,
    'GTZAN': 7,
    'MTGGenre': 7,
    'MTGInstrument': 'all',
    'MTGMood': 6,
    'MTGTop50': 6,
    'MTT': 'all',
    'NSynthI': 6,
    'NSynthP': 1,
    'VocalSetS': 2,
    'VocalSetT': 9,
} 

MERT_BEST_LAYER_IDX = {
    'EMO': 5,
    'GS': 8,
    'GTZAN': 7,
    'MTGGenre': 7,
    'MTGInstrument': 'all',
    'MTGMood': 6,
    'MTGTop50': 6,
    'MTT': 'all',
    'NSynthI': 6,
    'NSynthP': 1,
    'VocalSetS': 2,
    'VocalSetT': 9,
} 
CLASSIFIERS = {

}

ID2CLASS = {

}

TASKS = ['GS', 'MTGInstrument', 'MTGGenre', 'MTGTop50', 'MTGMood', 'NSynthI', 'NSynthP', 'VocalSetS', 'VocalSetT','EMO',]
Regression_TASKS = ['EMO']
head_dir = './Prediction_Head/best-layer-MERT-v1-95M'
for task in TASKS:
    print('loading', task)
    with open(os.path.join(head_dir,f'{task}.id2class.json'), 'r') as f:
        ID2CLASS[task]=json.load(f)
    num_class = len(ID2CLASS[task].keys())
    CLASSIFIERS[task] = MLPProberBase(d=768, layer=MERT_BEST_LAYER_IDX[task], num_outputs=num_class)
    CLASSIFIERS[task].load_state_dict(torch.load(f'{head_dir}/{task}.ckpt')['state_dict'])
    CLASSIFIERS[task].to(device)

model.to(device)

def model_inference(inputs):
    waveform, sample_rate = torchaudio.load(inputs)

    resample_rate = processor.sampling_rate

    # make sure the sample_rate aligned
    if resample_rate != sample_rate:
        # print(f'setting rate from {sample_rate} to {resample_rate}')
        resampler = T.Resample(sample_rate, resample_rate)
        waveform = resampler(waveform)
    
    #waveform = waveform.view(-1,) # make it (n_sample, )
    waveform = waveform[0][0:4*resample_rate]  # cut to 4s samples
    
    model_inputs = processor(waveform, sampling_rate=resample_rate, return_tensors="pt")
    model_inputs.to(device)
    with torch.no_grad():
        model_outputs = model(**model_inputs, output_hidden_states=True)

    # take a look at the output shape, there are 13 layers of representation
    # each layer performs differently in different downstream tasks, you should choose empirically
    all_layer_hidden_states = torch.stack(model_outputs.hidden_states).squeeze()[1:,:,:].unsqueeze(0)
    print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim]
    all_layer_hidden_states = all_layer_hidden_states.mean(dim=2)

    task_output_texts = ""
    df = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
    df_objects = []

    for task in TASKS:
        num_class = len(ID2CLASS[task].keys())
        if MERT_BEST_LAYER_IDX[task] == 'all':
            logits = CLASSIFIERS[task](all_layer_hidden_states) # [1, 87]
        else:
            logits = CLASSIFIERS[task](all_layer_hidden_states[:, MERT_BEST_LAYER_IDX[task]])
        # print(f'task {task} logits:', logits.shape, 'num class:', num_class)
        
        sorted_idx = torch.argsort(logits, dim = -1, descending=True)[0] # batch =1 
        sorted_prob,_ = torch.sort(nn.functional.softmax(logits[0], dim=-1), dim=-1, descending=True)
        # print(sorted_prob)
        # print(sorted_prob.shape)
        
        top_n_show = 5 if num_class >= 5 else num_class
        # task_output_texts = task_output_texts + f"TASK {task} output:\n" + "\n".join([str(ID2CLASS[task][str(sorted_idx[idx].item())])+f', probability: {sorted_prob[idx].item():.2%}' for idx in range(top_n_show)]) + '\n'
        # task_output_texts = task_output_texts + '----------------------\n'

        row_elements = [task]
        for idx in range(top_n_show):
            print(ID2CLASS[task])
            # print('id', str(sorted_idx[idx].item()))
            output_class_name = str(ID2CLASS[task][str(sorted_idx[idx].item())])
            output_class_name = re.sub(r'^\w+---', '', output_class_name)
            output_class_name = re.sub(r'^\w+\/\w+---', '', output_class_name)
            # print('output name', output_class_name)
            output_prob = f' {sorted_prob[idx].item():.2%}'
            row_elements.append(output_class_name+output_prob)
        # fill empty elment
        for _ in range(5+1 - len(row_elements)):
            row_elements.append(' ')
        df_objects.append(row_elements)
    df = pd.DataFrame(df_objects, columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
    return df

def convert_audio(inputs):
    #audio_data, sample_rate = librosa.load(inputs, sr=None)
    return model_inference(inputs)    

def build_audio_flow(title, description, article):
    audio_file = gr.File(label="Select Audio File (*.wav)")

    demo =  gr.Interface(
        fn=convert_audio,
        inputs=audio_file,
        outputs=outputs,
        allow_flagging="never",
        title=title,
        description=description,
        article=article,
    )

    return demo

demo = build_audio_flow(title, description, article)
# demo.queue(concurrency_count=1, max_size=5)
demo.launch()