Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- spam_app.py +83 -0
- spam_model.joblib +3 -0
- spam_requirements.txt +5 -0
- tfidf_vectorizer.joblib +3 -0
spam_app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import xgboost as xgb
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
def classify_email(email_text):
|
7 |
+
tfidf = joblib.load('tfidf_vectorizer.joblib')
|
8 |
+
model = joblib.load('spam_model.joblib')
|
9 |
+
email_tfidf = tfidf.transform([email_text])
|
10 |
+
email_dmatrix = xgb.DMatrix(email_tfidf)
|
11 |
+
prediction = model.predict(email_dmatrix)[0]
|
12 |
+
confidence = max(prediction, 1 - prediction)
|
13 |
+
label = "Spam" if prediction > 0.5 else "Not Spam"
|
14 |
+
return {label: float(confidence)}
|
15 |
+
|
16 |
+
def analyze_email(email_text):
|
17 |
+
tfidf = joblib.load('tfidf_vectorizer.joblib')
|
18 |
+
model = joblib.load('spam_model.joblib')
|
19 |
+
email_tfidf = tfidf.transform([email_text])
|
20 |
+
email_dmatrix = xgb.DMatrix(email_tfidf)
|
21 |
+
prediction = model.predict(email_dmatrix)[0]
|
22 |
+
confidence = max(prediction, 1 - prediction)
|
23 |
+
label = "Spam" if prediction > 0.5 else "Not Spam"
|
24 |
+
|
25 |
+
# Get feature importance
|
26 |
+
feature_names = tfidf.get_feature_names_out()
|
27 |
+
feature_importance = model.get_score(importance_type='gain')
|
28 |
+
top_features = sorted(feature_importance.items(), key=lambda x: x[1], reverse=True)[:5]
|
29 |
+
|
30 |
+
analysis = f"Classification: {label} (Confidence: {confidence:.2%})\n\n"
|
31 |
+
analysis += "Top 5 influential words:\n"
|
32 |
+
for feature, importance in top_features:
|
33 |
+
if feature in email_text.lower():
|
34 |
+
analysis += f"- {feature}: {importance:.2f}\n"
|
35 |
+
|
36 |
+
return analysis
|
37 |
+
|
38 |
+
# Create Gradio interface
|
39 |
+
with gr.Blocks(css="footer {visibility: hidden}") as iface:
|
40 |
+
gr.Markdown(
|
41 |
+
"""
|
42 |
+
# 🚀 Spam Email Classifier
|
43 |
+
|
44 |
+
Using Machine Learning to detect spam emails with high accuracy!
|
45 |
+
"""
|
46 |
+
)
|
47 |
+
with gr.Row():
|
48 |
+
with gr.Column(scale=2):
|
49 |
+
email_input = gr.Textbox(lines=5, label="Enter email text")
|
50 |
+
with gr.Row():
|
51 |
+
classify_btn = gr.Button("Classify")
|
52 |
+
analyze_btn = gr.Button("Detailed Analysis")
|
53 |
+
with gr.Column(scale=1):
|
54 |
+
label_output = gr.Label(label="Classification")
|
55 |
+
analysis_output = gr.Textbox(label="Detailed Analysis", lines=8)
|
56 |
+
|
57 |
+
examples = [
|
58 |
+
["Get fat quick! Buy our cheese burger now!"],
|
59 |
+
["Hi Ajibola, let's go out on a date tonight"],
|
60 |
+
["Congratulations! You've won a free iPhone. Click here to claim."],
|
61 |
+
["Please find attached the report for Q2 sales figures."]
|
62 |
+
]
|
63 |
+
gr.Examples(examples, inputs=email_input)
|
64 |
+
|
65 |
+
classify_btn.click(classify_email, inputs=email_input, outputs=label_output)
|
66 |
+
analyze_btn.click(analyze_email, inputs=email_input, outputs=analysis_output)
|
67 |
+
|
68 |
+
gr.Markdown(
|
69 |
+
"""
|
70 |
+
### How it works
|
71 |
+
This classifier uses an XGBoost model trained on a large dataset of over 190,000 emails.
|
72 |
+
The model achieved a 98% accuracy on the training data and 94% accuracy on the test data.
|
73 |
+
It analyzes the content and structure of the email to determine if it's spam or not.
|
74 |
+
|
75 |
+
### Tips for use
|
76 |
+
- Enter the full text of the email for best results
|
77 |
+
- The 'Detailed Analysis' shows the top words influencing the classification
|
78 |
+
- Confidence score indicates how sure the model is about its prediction
|
79 |
+
"""
|
80 |
+
)
|
81 |
+
|
82 |
+
# Launch the interface
|
83 |
+
iface.launch()
|
spam_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a0c80f4df9fd5df5d070bcaf91424cdfd885d8270e5d2bc417753df1a0ab4b9
|
3 |
+
size 295684
|
spam_requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
joblib
|
3 |
+
xgboost
|
4 |
+
scikit-learn
|
5 |
+
numpy
|
tfidf_vectorizer.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0176aadd7ba5b4b3c4841a6dfabfcc04b85e17ed59325905d6bfbf02e6ec92e8
|
3 |
+
size 2326758
|