Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- README.md +86 -13
- app .py +169 -0
- requirements.txt +6 -1
README.md
CHANGED
@@ -1,13 +1,86 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Smart Sales Email Generator
|
2 |
+
|
3 |
+
An AI-powered tool that generates contextual and professional follow-up emails based on previous customer interactions, using RAG, sentiment analysis and quality scoring.
|
4 |
+
|
5 |
+
## AI Tools & Technologies
|
6 |
+
- RAG (Retrieval Augmented Generation) Implementation:
|
7 |
+
* Vector Store: ChromaDB for email template storage
|
8 |
+
* Embeddings: HuggingFace Sentence Transformers
|
9 |
+
* Similarity Search for context retrieval
|
10 |
+
- LangChain for orchestrating the RAG pipeline
|
11 |
+
- Hugging Face Transformers for sentiment analysis
|
12 |
+
- DeepSeek model for email generation
|
13 |
+
- Gradio for the interactive web interface
|
14 |
+
- Transformers pipeline for NLP tasks
|
15 |
+
|
16 |
+
## Key Features
|
17 |
+
- RAG-powered contextual email generation
|
18 |
+
- Retrieval of similar past interactions
|
19 |
+
- Automated sentiment analysis for tone detection
|
20 |
+
- Customizable urgency levels and situation types
|
21 |
+
- Real-time email quality scoring
|
22 |
+
- Multiple pre-built templates for common scenarios
|
23 |
+
- Context-aware response generation
|
24 |
+
|
25 |
+
## Technical Skills Demonstrated
|
26 |
+
- RAG System Implementation
|
27 |
+
- Vector Database Management
|
28 |
+
- Embedding Generation
|
29 |
+
- Natural Language Processing (NLP)
|
30 |
+
- Large Language Model (LLM) integration
|
31 |
+
- Prompt engineering
|
32 |
+
- API integration (Hugging Face Hub)
|
33 |
+
- Web application development
|
34 |
+
- Machine Learning model deployment
|
35 |
+
- GPU acceleration support
|
36 |
+
- Error handling and input validation
|
37 |
+
|
38 |
+
## Architecture
|
39 |
+
- RAG Components:
|
40 |
+
* Vector Store for template storage
|
41 |
+
* Embedding model for text vectorization
|
42 |
+
* Similarity search for context retrieval
|
43 |
+
- Language Models:
|
44 |
+
* DeepSeek for generation
|
45 |
+
* BERT-based model for sentiment analysis
|
46 |
+
- Interface:
|
47 |
+
* Gradio for web UI
|
48 |
+
* Real-time processing
|
49 |
+
|
50 |
+
## Use Cases
|
51 |
+
- Customer Service Follow-ups
|
52 |
+
- Complaint Resolution
|
53 |
+
- Service Issue Communication
|
54 |
+
- Payment Dispute Handling
|
55 |
+
- Product Query Responses
|
56 |
+
- General Business Communication
|
57 |
+
|
58 |
+
## How to Use
|
59 |
+
1. Enter the previous customer interaction
|
60 |
+
2. Select the situation type from available options
|
61 |
+
3. Choose tone (optional - will be automatically detected)
|
62 |
+
4. Set urgency level (High/Medium/Low)
|
63 |
+
5. Submit to generate a professional follow-up email with quality score
|
64 |
+
|
65 |
+
|
66 |
+
## Development Stack
|
67 |
+
- Python 3.x
|
68 |
+
- LangChain Framework
|
69 |
+
- ChromaDB
|
70 |
+
- HuggingFace Transformers
|
71 |
+
- Gradio UI Framework
|
72 |
+
- CUDA support for GPU acceleration
|
73 |
+
|
74 |
+
## Future Enhancements
|
75 |
+
- Enhanced RAG capabilities
|
76 |
+
- Expanded template database
|
77 |
+
- Response time optimization
|
78 |
+
- Direct email system integration
|
79 |
+
- Analytics and tracking capabilities
|
80 |
+
- Enhanced scoring system
|
81 |
+
|
82 |
+
## License
|
83 |
+
MIT License
|
84 |
+
|
85 |
+
## Author
|
86 |
+
[Tobi Ajibola]
|
app .py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from langchain import HuggingFaceHub
|
5 |
+
from langchain.chains import LLMChain
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
#
|
10 |
+
|
11 |
+
# 2. Model Initialization
|
12 |
+
# Initialize sentiment analyzer
|
13 |
+
sentiment_analyzer = pipeline(
|
14 |
+
"sentiment-analysis",
|
15 |
+
model="finiteautomata/bertweet-base-sentiment-analysis",
|
16 |
+
device=0 if torch.cuda.is_available() else -1
|
17 |
+
)
|
18 |
+
|
19 |
+
# Initialize LLM
|
20 |
+
llm = HuggingFaceHub(
|
21 |
+
repo_id="deepseek-ai/deepseek-coder-33b-instruct",
|
22 |
+
model_kwargs={"temperature": 0.7}
|
23 |
+
)
|
24 |
+
|
25 |
+
# 3. Templates
|
26 |
+
email_template = PromptTemplate(
|
27 |
+
input_variables=["previous_interaction", "situation_type", "tone", "urgency"],
|
28 |
+
template="""Based on these details, generate a professional follow-up email:
|
29 |
+
|
30 |
+
Previous Interaction: {previous_interaction}
|
31 |
+
Situation Type: {situation_type}
|
32 |
+
Tone: {tone}
|
33 |
+
Urgency Level: {urgency}
|
34 |
+
|
35 |
+
Generate a personalized email that:
|
36 |
+
1. Maintains {tone} tone
|
37 |
+
2. Addresses the specific situation
|
38 |
+
3. Provides clear next steps
|
39 |
+
4. Is appropriate for {urgency} urgency level
|
40 |
+
"""
|
41 |
+
)
|
42 |
+
|
43 |
+
scoring_template = """
|
44 |
+
Analyze this follow-up email carefully and provide scores on a scale of 1-10 for each category:
|
45 |
+
|
46 |
+
Email to analyze:
|
47 |
+
{email_text}
|
48 |
+
|
49 |
+
Please provide numerical scores and explanations in this exact format:
|
50 |
+
|
51 |
+
CLARITY SCORE: [1-10]
|
52 |
+
Explanation: [Why this score]
|
53 |
+
|
54 |
+
PROFESSIONALISM SCORE: [1-10]
|
55 |
+
Explanation: [Why this score]
|
56 |
+
|
57 |
+
ACTION ITEMS SCORE: [1-10]
|
58 |
+
Explanation: [Why this score]
|
59 |
+
|
60 |
+
PERSONALIZATION SCORE: [1-10]
|
61 |
+
Explanation: [Why this score]
|
62 |
+
|
63 |
+
OVERALL EFFECTIVENESS SCORE: [1-10]
|
64 |
+
Explanation: [Why this score]
|
65 |
+
|
66 |
+
IMPROVEMENT SUGGESTIONS:
|
67 |
+
1. [First suggestion]
|
68 |
+
2. [Second suggestion]
|
69 |
+
3. [Third suggestion]
|
70 |
+
"""
|
71 |
+
|
72 |
+
# 4. Create LangChain
|
73 |
+
email_chain = LLMChain(llm=llm, prompt=email_template)
|
74 |
+
|
75 |
+
# 5. Helper Functions
|
76 |
+
def analyze_sentiment(text):
|
77 |
+
try:
|
78 |
+
result = sentiment_analyzer(text)[0]
|
79 |
+
sentiment_to_tone = {
|
80 |
+
'POS': 'Friendly',
|
81 |
+
'NEU': 'Professional',
|
82 |
+
'NEG': 'Apologetic'
|
83 |
+
}
|
84 |
+
return sentiment_to_tone.get(result['label'], 'Professional')
|
85 |
+
except Exception as e:
|
86 |
+
return 'Professional'
|
87 |
+
|
88 |
+
# 6. Main Generation Function
|
89 |
+
def generate_followup_email(previous_interaction, situation_type, tone, urgency):
|
90 |
+
try:
|
91 |
+
if not tone:
|
92 |
+
tone = analyze_sentiment(previous_interaction)
|
93 |
+
|
94 |
+
# Generate email
|
95 |
+
email_result = email_chain.run({
|
96 |
+
"previous_interaction": previous_interaction,
|
97 |
+
"situation_type": situation_type,
|
98 |
+
"tone": tone,
|
99 |
+
"urgency": urgency
|
100 |
+
})
|
101 |
+
|
102 |
+
# Generate score
|
103 |
+
score_result = llm(scoring_template.format(email_text=email_result))
|
104 |
+
return email_result, score_result
|
105 |
+
except Exception as e:
|
106 |
+
return f"Error generating email: {str(e)}", "Scoring unavailable"
|
107 |
+
|
108 |
+
# 7. Gradio Interface
|
109 |
+
demo = gr.Interface(
|
110 |
+
fn=generate_followup_email,
|
111 |
+
inputs=[
|
112 |
+
gr.Textbox(
|
113 |
+
label="Previous Interaction",
|
114 |
+
lines=5,
|
115 |
+
placeholder="Describe the previous interaction with the customer..."
|
116 |
+
),
|
117 |
+
gr.Dropdown(
|
118 |
+
label="Situation Type",
|
119 |
+
choices=[
|
120 |
+
"Complaint Resolution",
|
121 |
+
"Service Issue",
|
122 |
+
"Payment Dispute",
|
123 |
+
"Product Query",
|
124 |
+
"General Follow-up"
|
125 |
+
]
|
126 |
+
),
|
127 |
+
gr.Dropdown(
|
128 |
+
label="Tone (Optional - will be automatically detected if not specified)",
|
129 |
+
choices=[
|
130 |
+
"",
|
131 |
+
"Professional",
|
132 |
+
"Apologetic",
|
133 |
+
"Friendly",
|
134 |
+
"Formal",
|
135 |
+
"Empathetic"
|
136 |
+
]
|
137 |
+
),
|
138 |
+
gr.Dropdown(
|
139 |
+
label="Urgency",
|
140 |
+
choices=["High", "Medium", "Low"]
|
141 |
+
)
|
142 |
+
],
|
143 |
+
outputs=[
|
144 |
+
gr.Textbox(label="Generated Email"),
|
145 |
+
gr.Textbox(label="Email Score and Suggestions")
|
146 |
+
],
|
147 |
+
title="Smart Sales Email Generator with Quality Scoring",
|
148 |
+
description="Generate and evaluate follow-up emails based on previous interactions",
|
149 |
+
examples=[
|
150 |
+
[
|
151 |
+
"Customer complained about slow website loading times and threatened to cancel subscription",
|
152 |
+
"Complaint Resolution",
|
153 |
+
"Apologetic",
|
154 |
+
"High"
|
155 |
+
],
|
156 |
+
[
|
157 |
+
"Client requested information about premium features and pricing",
|
158 |
+
"Product Query",
|
159 |
+
"Professional",
|
160 |
+
"Medium"
|
161 |
+
]
|
162 |
+
]
|
163 |
+
)
|
164 |
+
|
165 |
+
# 8. Launch App
|
166 |
+
if __name__ == "__main__":
|
167 |
+
demo.launch()
|
168 |
+
|
169 |
+
|
requirements.txt
CHANGED
@@ -1 +1,6 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
langchain
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
emoji
|
6 |
+
huggingface_hub
|