Spaces:
Runtime error
Runtime error
import chainlit as cl | |
import pandas as pd | |
import io | |
import matplotlib.pyplot as plt | |
import base64 | |
from io import BytesIO | |
from pandasai import SmartDataframe | |
import pandas as pd | |
from pandasai.llm import OpenAI | |
from io import StringIO | |
import matplotlib.pyplot as plt | |
import csv | |
from collections import defaultdict | |
def find_most_valuable_feature(csv_file): | |
print("find_most_valuable_feature") | |
print(csv_file) | |
openai.api_key = os.environ["OPENAI_API_KEY"] | |
smart_llm = OpenAI() | |
# Initialize a defaultdict to store column data | |
columns = defaultdict(list) | |
# Read the CSV file and populate the defaultdict | |
with open("upload.csv") as f: | |
reader = csv.reader(f) | |
headers = next(reader) | |
for row in reader: | |
for header, value in zip(headers, row): | |
columns[header].append(value) | |
# Manually create a DataFrame from the defaultdict | |
smart_df = pd.DataFrame({ | |
"ID": columns["ID"], | |
"Date and Time": columns["Date and Time"], | |
"Business Unit": columns["Business Unit"], | |
"Usage Change": columns["Usage Change"], | |
"Wolftech Improvement": columns["Wolftech Improvement"], | |
"Likelihood to Recommend": columns["Likelihood to Recommend"], | |
"Effective Training": columns["Effective Training"], | |
"Most Valuable Feature": columns["Most Valuable Feature"] | |
}) | |
smart_df = SmartDataframe(smart_df, config={"llm": smart_llm}) | |
out = smart_df.chat('Summarize the top three "Most Valuable Feature" for people where Usage Changed was Increased?') | |
print(out) | |
df = out | |
# Plotting | |
plt.figure(figsize=(10, 6)) | |
plt.bar(df["Most Valuable Feature"], df["Count"], color='blue') | |
plt.xlabel('Most Valuable Feature') | |
plt.ylabel('Count') | |
plt.title('Count of Most Valuable Features') | |
plt.xticks(rotation=45, ha="right") # Rotate labels for better readability | |
plt.tight_layout() # Adjust layout for better fit | |
# Save the plot to a BytesIO object | |
image_buffer = BytesIO() | |
plt.savefig(image_buffer, format='png') | |
image_buffer.seek(0) | |
return image_buffer | |
def process_and_analyze_data(csv_file): | |
# Read CSV file | |
csv_data = pd.read_csv(csv_file) | |
# Logging to check data loading | |
print(f"CSV Data Loaded: {csv_data.head()}") | |
# Count of responses in each category of 'Business Unit' | |
business_unit_counts = csv_data['Business Unit'].value_counts() | |
# Plotting the count of responses in each 'Business Unit' category | |
plt.figure(figsize=(10, 6)) | |
business_unit_counts.plot(kind='bar') | |
plt.title('Count of Responses by Business Unit') | |
plt.xlabel('Business Unit') | |
plt.ylabel('Count') | |
plt.xticks(rotation=45) | |
plt.tight_layout() | |
# Save the plot to a BytesIO object | |
image_buffer = BytesIO() | |
plt.savefig(image_buffer, format='png') | |
image_buffer.seek(0) | |
return image_buffer | |
# Function to handle message events | |
async def handle_message(message: cl.Message): | |
# Retrieve the CSV file from the message | |
csv_file = next( | |
( | |
io.BytesIO(file.content) | |
for file in message.elements or [] | |
if file.mime and "csv" in file.mime | |
), | |
None, | |
) | |
# Logging to check file retrieval | |
print(f"CSV File: {csv_file}") | |
if csv_file: | |
try: | |
image_buffer = find_most_valuable_feature(csv_file) | |
# Get bytes data from BytesIO object and send the image data | |
image_data = image_buffer.getvalue() | |
name = "chart" | |
cl.user_session.set(name, image_data) | |
cl.user_session.set("generated_image", name) | |
await cl.Message(content="Based on the people who increased usage, here are the most valuable features").send() | |
generated_image = cl.user_session.get(name) | |
elements = [] | |
actions = [] | |
elements = [ | |
cl.Image( | |
content=generated_image, | |
name=name, | |
display="inline", | |
size="large" | |
) | |
] | |
await cl.Message(content=name, elements=elements, actions=actions).send() | |
except Exception as e: | |
await cl.Message(content=f"An error occurred: {str(e)}").send() | |
else: | |
await cl.Message(content="Please upload a CSV file.").send() | |
# Run the ChainLit app | |
if __name__ == "__main__": | |
cl.run() | |