File size: 8,164 Bytes
fa3d6a7 b6a7af0 fa3d6a7 638b146 38614a2 638b146 fa3d6a7 02f3534 fa3d6a7 638b146 fa3d6a7 638b146 fa3d6a7 38614a2 fa3d6a7 87c4f81 fa3d6a7 638b146 fa3d6a7 38614a2 638b146 fa3d6a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import chainlit as cl
import pandas as pd
import io
import matplotlib.pyplot as plt
import base64
from io import BytesIO
from pandasai import SmartDataframe
import pandas as pd
from pandasai.llm import OpenAI
from io import StringIO
import matplotlib.pyplot as plt
import csv
from collections import defaultdict
import os
from langchain.agents import AgentExecutor, AgentType, initialize_agent
from langchain.agents.structured_chat.prompt import SUFFIX
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from chainlit.action import Action
from chainlit.input_widget import Select, Switch, Slider
from langchain.tools import StructuredTool, Tool
# this is our tool - which is what allows our agent to generate images in the first place!
# the `description` field is of utmost imporance as it is what the LLM "brain" uses to determine
# which tool to use for a given input.
got_csv = False
@cl.on_chat_start
async def start():
"""
This is called when the Chainlit chat is started!
We can add some settings to our application to allow users to select the appropriate model, and more!
"""
settings = await cl.ChatSettings(
[
Select(
id="Model",
label="OpenAI - Model",
values=["gpt-3.5-turbo", "gpt-4-1106-preview"],
initial_index=1,
),
Switch(id="Streaming", label="OpenAI - Stream Tokens", initial=True),
Slider(
id="Temperature",
label="OpenAI - Temperature",
initial=0,
min=0,
max=2,
step=0.1,
),
]
).send()
await setup_agent(settings)
@cl.on_settings_update
async def setup_agent(settings):
print("Setup agent with following settings: ", settings)
# We set up our agent with the user selected (or default) settings here.
llm = ChatOpenAI(
temperature=settings["Temperature"],
streaming=settings["Streaming"],
model=settings["Model"],
)
# We get our memory here, which is used to track the conversation history.
memory = get_memory()
# This suffix is used to provide the chat history to the prompt.
_SUFFIX = "Chat history:\n{chat_history}\n\n" + SUFFIX
# We initialize our agent here, which is simply being used to decide between responding with text
# or an image
agent = initialize_agent(
llm=llm, # our LLM (default is GPT-4 Turbo)
tools = [
generate_most_valuable_feature
],
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, # the agent type we're using today
memory=memory, # our memory!
agent_kwargs={
"suffix": _SUFFIX, # adding our chat history suffix
"input_variables": ["input", "agent_scratchpad", "chat_history"],
},
)
cl.user_session.set("agent", agent) # storing our agent in the user session
@cl.cache
def get_memory():
"""
This is used to track the conversation history and allow our agent to
remember what was said before.
"""
return ConversationBufferMemory(memory_key="chat_history")
def find_most_valuable_feature(csv_file):
print("find_most_valuable_feature")
print(csv_file)
smart_llm = OpenAI(api_token=os.environ["OPENAI_API_KEY"])
# Initialize a defaultdict to store column data
columns = defaultdict(list)
# Read the CSV file and populate the defaultdict
with open("upload.csv") as f:
reader = csv.reader(f)
headers = next(reader)
for row in reader:
for header, value in zip(headers, row):
columns[header].append(value)
# Manually create a DataFrame from the defaultdict
smart_df = pd.DataFrame({
"ID": columns["ID"],
"Date and Time": columns["Date and Time"],
"Business Unit": columns["Business Unit"],
"Usage Change": columns["Usage Change"],
"Wolftech Improvement": columns["Wolftech Improvement"],
"Likelihood to Recommend": columns["Likelihood to Recommend"],
"Effective Training": columns["Effective Training"],
"Most Valuable Feature": columns["Most Valuable Feature"]
})
smart_df = SmartDataframe(smart_df, config={"llm": smart_llm})
out = smart_df.chat('Summarize the top three "Most Valuable Feature" for people where Usage Changed was Increased?')
print(out)
df = out
# Plotting
plt.figure(figsize=(10, 6))
plt.bar(df["Most Valuable Feature"], df["Count"], color='blue')
plt.xlabel('Most Valuable Feature')
plt.ylabel('Count')
plt.title('Count of Most Valuable Features')
plt.xticks(rotation=45, ha="right") # Rotate labels for better readability
plt.tight_layout() # Adjust layout for better fit
# Save the plot to a BytesIO object
image_buffer = BytesIO()
plt.savefig(image_buffer, format='png')
image_buffer.seek(0)
return image_buffer
generate_most_valuable_feature = Tool.from_function(
func=find_most_valuable_feature,
name="Find most valuable feature",
description=f"Useful for finding the most valuable feature from a CSV file",
return_direct=True,
)
def process_and_analyze_data(csv_file):
# Read CSV file
csv_data = pd.read_csv(csv_file)
# Logging to check data loading
print(f"CSV Data Loaded: {csv_data.head()}")
# Count of responses in each category of 'Business Unit'
business_unit_counts = csv_data['Business Unit'].value_counts()
# Plotting the count of responses in each 'Business Unit' category
plt.figure(figsize=(10, 6))
business_unit_counts.plot(kind='bar')
plt.title('Count of Responses by Business Unit')
plt.xlabel('Business Unit')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.tight_layout()
# Save the plot to a BytesIO object
image_buffer = BytesIO()
plt.savefig(image_buffer, format='png')
image_buffer.seek(0)
return image_buffer
# Function to handle message events
@cl.on_message
async def handle_message(message: cl.Message):
global got_csv, agent
# Retrieve the CSV file from the message
csv_file = next(
(
io.BytesIO(file.content)
for file in message.elements or []
if file.mime and "csv" in file.mime
),
None,
)
# Logging to check file retrieval
print(f"CSV File: {csv_file}")
if csv_file:
got_csv = True
try:
image_buffer = find_most_valuable_feature(csv_file)
# Get bytes data from BytesIO object and send the image data
image_data = image_buffer.getvalue()
name = "chart"
cl.user_session.set(name, image_data)
cl.user_session.set("generated_image", name)
await cl.Message(content="Based on the people who increased usage, here are the most valuable features...").send()
generated_image = cl.user_session.get(name)
agent = cl.user_session.get("agent")
res = await cl.make_async(agent.run)(
input=message.content, callbacks=[cl.LangchainCallbackHandler()]
)
elements = []
actions = []
elements = [
cl.Image(
content=generated_image,
name=name,
display="inline",
size="large"
)
]
await cl.Message(content=name, elements=elements, actions=actions).send()
except Exception as e:
await cl.Message(content=f"An error occurred: {str(e)}").send()
else:
if not got_csv:
await cl.Message(content="Please upload a CSV file.").send()
else:
res = await cl.make_async(agent.run)(
input=message.content, callbacks=[cl.LangchainCallbackHandler()]
)
await cl.Message(content=res).send()
# Run the ChainLit app
if __name__ == "__main__":
cl.run()
|