Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import tempfile | |
import os | |
import time | |
# Model and setup | |
MODEL_NAME = "openai/whisper-large-v3" | |
BATCH_SIZE = 8 | |
YT_LENGTH_LIMIT_S = 3600 # 1-hour limit for YouTube files | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
# Function to transcribe audio | |
def transcribe(inputs, task): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file.") | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
return text | |
# YouTube video processing functions | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
return f'<center><iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"></iframe></center>' | |
def download_yt_audio(yt_url, filename): | |
# [ ... existing code for download_yt_audio ... ] | |
def yt_transcribe(yt_url, task): | |
html_embed_str = _return_yt_html_embed(yt_url) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as f: | |
inputs = f.read() | |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
return html_embed_str, text | |
# Gradio interfaces | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="filepath", optional=True), | |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), | |
], | |
outputs="text", | |
layout="horizontal", | |
theme="huggingface", | |
title="Whisper Large V3: Transcribe Audio", | |
description="Transcribe long-form microphone or audio inputs with the click of a button!" | |
) | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"), | |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), | |
], | |
outputs="text", | |
layout="horizontal", | |
theme="NoCrypt/[email protected]", | |
title="Whisper Large V3: Transcribe Audio", | |
description="Transcribe long-form microphone or audio inputs with the click of a button!" | |
) | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe") | |
], | |
outputs=["html", "text"], | |
layout="horizontal", | |
theme="NoCrypt/[email protected]", | |
title="Whisper Large V3: Transcribe YouTube", | |
description="Transcribe long-form YouTube videos with the click of a button!" | |
) | |
# Main Gradio application | |
with gr.Blocks(theme="NoCrypt/[email protected]") as demo: | |
gr.HTML("<h1><center>AI Assistant<h1><center>") | |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"]) | |
demo.launch(enable_queue=True) | |