File size: 23,984 Bytes
aed64b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
import json
import logging
import os
from collections import deque, Counter
from random import choice
from time import time
import dill
import numpy as np
from tqdm import tqdm
from deep_speaker.audio import pad_mfcc, Audio
from deep_speaker.constants import NUM_FRAMES, NUM_FBANKS
from deep_speaker.conv_models import DeepSpeakerModel
from deep_speaker.utils import ensures_dir, load_pickle, load_npy, train_test_sp_to_utt
logger = logging.getLogger(__name__)
def extract_speaker(utt_file):
return utt_file.split('/')[-1].split('_')[0]
def sample_from_mfcc(mfcc, max_length):
if mfcc.shape[0] >= max_length:
r = choice(range(0, len(mfcc) - max_length + 1))
s = mfcc[r:r + max_length]
else:
s = pad_mfcc(mfcc, max_length)
return np.expand_dims(s, axis=-1)
def sample_from_mfcc_file(utterance_file, max_length):
mfcc = np.load(utterance_file)
return sample_from_mfcc(mfcc, max_length)
class KerasFormatConverter:
def __init__(self, working_dir, load_test_only=False):
self.working_dir = working_dir
self.output_dir = os.path.join(self.working_dir, 'keras-inputs')
ensures_dir(self.output_dir)
self.categorical_speakers = load_pickle(os.path.join(self.output_dir, 'categorical_speakers.pkl'))
if not load_test_only:
self.kx_train = load_npy(os.path.join(self.output_dir, 'kx_train.npy'))
self.ky_train = load_npy(os.path.join(self.output_dir, 'ky_train.npy'))
self.kx_test = load_npy(os.path.join(self.output_dir, 'kx_test.npy'))
self.ky_test = load_npy(os.path.join(self.output_dir, 'ky_test.npy'))
self.audio = Audio(cache_dir=self.working_dir, audio_dir=None)
if self.categorical_speakers is None:
self.categorical_speakers = SparseCategoricalSpeakers(self.audio.speaker_ids)
def persist_to_disk(self):
with open(os.path.join(self.output_dir, 'categorical_speakers.pkl'), 'wb') as w:
dill.dump(self.categorical_speakers, w)
np.save(os.path.join(self.output_dir, 'kx_train.npy'), self.kx_train)
np.save(os.path.join(self.output_dir, 'kx_test.npy'), self.kx_test)
np.save(os.path.join(self.output_dir, 'ky_train.npy'), self.ky_train)
np.save(os.path.join(self.output_dir, 'ky_test.npy'), self.ky_test)
def generate_per_phase(self, max_length=NUM_FRAMES, num_per_speaker=3000, is_test=False):
# train OR test.
num_speakers = len(self.audio.speaker_ids)
sp_to_utt = train_test_sp_to_utt(self.audio, is_test)
# 64 fbanks 1 channel(s).
# float32
kx = np.zeros((num_speakers * num_per_speaker, max_length, NUM_FBANKS, 1), dtype=np.float32)
ky = np.zeros((num_speakers * num_per_speaker, 1), dtype=np.float32)
desc = f'Converting to Keras format [{"test" if is_test else "train"}]'
for i, speaker_id in enumerate(tqdm(self.audio.speaker_ids, desc=desc)):
utterances_files = sp_to_utt[speaker_id]
for j, utterance_file in enumerate(np.random.choice(utterances_files, size=num_per_speaker, replace=True)):
self.load_into_mat(utterance_file, self.categorical_speakers, speaker_id, max_length, kx, ky,
i * num_per_speaker + j)
return kx, ky
def generate(self, max_length=NUM_FRAMES, counts_per_speaker=(3000, 500)):
kx_train, ky_train = self.generate_per_phase(max_length, counts_per_speaker[0], is_test=False)
kx_test, ky_test = self.generate_per_phase(max_length, counts_per_speaker[1], is_test=True)
logger.info(f'kx_train.shape = {kx_train.shape}')
logger.info(f'ky_train.shape = {ky_train.shape}')
logger.info(f'kx_test.shape = {kx_test.shape}')
logger.info(f'ky_test.shape = {ky_test.shape}')
self.kx_train, self.ky_train, self.kx_test, self.ky_test = kx_train, ky_train, kx_test, ky_test
@staticmethod
def load_into_mat(utterance_file, categorical_speakers, speaker_id, max_length, kx, ky, i):
kx[i] = sample_from_mfcc_file(utterance_file, max_length)
ky[i] = categorical_speakers.get_index(speaker_id)
class SparseCategoricalSpeakers:
def __init__(self, speakers_list):
self.speaker_ids = sorted(speakers_list)
assert len(set(self.speaker_ids)) == len(self.speaker_ids) # all unique.
self.map = dict(zip(self.speaker_ids, range(len(self.speaker_ids))))
def get_index(self, speaker_id):
return self.map[speaker_id]
class OneHotSpeakers:
def __init__(self, speakers_list):
# pylint: disable=E0611,E0401
from tensorflow.keras.utils import to_categorical
self.speaker_ids = sorted(speakers_list)
self.int_speaker_ids = list(range(len(self.speaker_ids)))
self.map_speakers_to_index = dict([(k, v) for (k, v) in zip(self.speaker_ids, self.int_speaker_ids)])
self.map_index_to_speakers = dict([(v, k) for (k, v) in zip(self.speaker_ids, self.int_speaker_ids)])
self.speaker_categories = to_categorical(self.int_speaker_ids, num_classes=len(self.speaker_ids))
def get_speaker_from_index(self, index):
return self.map_index_to_speakers[index]
def get_one_hot(self, speaker_id):
index = self.map_speakers_to_index[speaker_id]
return self.speaker_categories[index]
class LazyTripletBatcher:
def __init__(self, working_dir: str, max_length: int, model: DeepSpeakerModel):
self.working_dir = working_dir
self.audio = Audio(cache_dir=working_dir)
logger.info(f'Picking audio from {working_dir}.')
self.sp_to_utt_train = train_test_sp_to_utt(self.audio, is_test=False)
self.sp_to_utt_test = train_test_sp_to_utt(self.audio, is_test=True)
self.max_length = max_length
self.model = model
self.nb_per_speaker = 2
self.nb_speakers = 640
self.history_length = 4
self.history_every = 100 # batches.
self.total_history_length = self.nb_speakers * self.nb_per_speaker * self.history_length # 25,600
self.metadata_train_speakers = Counter()
self.metadata_output_file = os.path.join(self.working_dir, 'debug_batcher.json')
self.history_embeddings_train = deque(maxlen=self.total_history_length)
self.history_utterances_train = deque(maxlen=self.total_history_length)
self.history_model_inputs_train = deque(maxlen=self.total_history_length)
self.history_embeddings = None
self.history_utterances = None
self.history_model_inputs = None
self.batch_count = 0
for _ in tqdm(range(self.history_length), desc='Initializing the batcher'): # init history.
self.update_triplets_history()
def update_triplets_history(self):
model_inputs = []
speakers = list(self.audio.speakers_to_utterances.keys())
np.random.shuffle(speakers)
selected_speakers = speakers[: self.nb_speakers]
embeddings_utterances = []
for speaker_id in selected_speakers:
train_utterances = self.sp_to_utt_train[speaker_id]
for selected_utterance in np.random.choice(a=train_utterances, size=self.nb_per_speaker, replace=False):
mfcc = sample_from_mfcc_file(selected_utterance, self.max_length)
embeddings_utterances.append(selected_utterance)
model_inputs.append(mfcc)
embeddings = self.model.m.predict(np.array(model_inputs))
assert embeddings.shape[-1] == 512
embeddings = np.reshape(embeddings, (len(selected_speakers), self.nb_per_speaker, 512))
self.history_embeddings_train.extend(list(embeddings.reshape((-1, 512))))
self.history_utterances_train.extend(embeddings_utterances)
self.history_model_inputs_train.extend(model_inputs)
# reason: can't index a deque with a np.array.
self.history_embeddings = np.array(self.history_embeddings_train)
self.history_utterances = np.array(self.history_utterances_train)
self.history_model_inputs = np.array(self.history_model_inputs_train)
with open(self.metadata_output_file, 'w') as w:
json.dump(obj=dict(self.metadata_train_speakers), fp=w, indent=2)
def get_batch(self, batch_size, is_test=False):
return self.get_batch_test(batch_size) if is_test else self.get_random_batch(batch_size, is_test=False)
def get_batch_test(self, batch_size):
return self.get_random_batch(batch_size, is_test=True)
def get_random_batch(self, batch_size, is_test=False):
sp_to_utt = self.sp_to_utt_test if is_test else self.sp_to_utt_train
speakers = list(self.audio.speakers_to_utterances.keys())
anchor_speakers = np.random.choice(speakers, size=batch_size // 3, replace=False)
anchor_utterances = []
positive_utterances = []
negative_utterances = []
for anchor_speaker in anchor_speakers:
negative_speaker = np.random.choice(list(set(speakers) - {anchor_speaker}), size=1)[0]
assert negative_speaker != anchor_speaker
pos_utterances = np.random.choice(sp_to_utt[anchor_speaker], 2, replace=False)
neg_utterance = np.random.choice(sp_to_utt[negative_speaker], 1, replace=True)[0]
anchor_utterances.append(pos_utterances[0])
positive_utterances.append(pos_utterances[1])
negative_utterances.append(neg_utterance)
# anchor and positive should have difference utterances (but same speaker!).
anc_pos = np.array([positive_utterances, anchor_utterances])
assert np.all(anc_pos[0, :] != anc_pos[1, :])
assert np.all(np.array([extract_speaker(s) for s in anc_pos[0, :]]) == np.array(
[extract_speaker(s) for s in anc_pos[1, :]]))
pos_neg = np.array([positive_utterances, negative_utterances])
assert np.all(pos_neg[0, :] != pos_neg[1, :])
assert np.all(np.array([extract_speaker(s) for s in pos_neg[0, :]]) != np.array(
[extract_speaker(s) for s in pos_neg[1, :]]))
batch_x = np.vstack([
[sample_from_mfcc_file(u, self.max_length) for u in anchor_utterances],
[sample_from_mfcc_file(u, self.max_length) for u in positive_utterances],
[sample_from_mfcc_file(u, self.max_length) for u in negative_utterances]
])
batch_y = np.zeros(shape=(len(batch_x), 1)) # dummy. sparse softmax needs something.
return batch_x, batch_y
def get_batch_train(self, batch_size):
from deep_speaker.test import batch_cosine_similarity
# s1 = time()
self.batch_count += 1
if self.batch_count % self.history_every == 0:
self.update_triplets_history()
all_indexes = range(len(self.history_embeddings_train))
anchor_indexes = np.random.choice(a=all_indexes, size=batch_size // 3, replace=False)
# s2 = time()
similar_negative_indexes = []
dissimilar_positive_indexes = []
# could be made parallel.
for anchor_index in anchor_indexes:
# s21 = time()
anchor_embedding = self.history_embeddings[anchor_index]
anchor_speaker = extract_speaker(self.history_utterances[anchor_index])
# why self.nb_speakers // 2? just random. because it is fast. otherwise it's too much.
negative_indexes = [j for (j, a) in enumerate(self.history_utterances)
if extract_speaker(a) != anchor_speaker]
negative_indexes = np.random.choice(negative_indexes, size=self.nb_speakers // 2)
# s22 = time()
anchor_embedding_tile = [anchor_embedding] * len(negative_indexes)
anchor_cos = batch_cosine_similarity(anchor_embedding_tile, self.history_embeddings[negative_indexes])
# s23 = time()
similar_negative_index = negative_indexes[np.argsort(anchor_cos)[-1]] # [-1:]
similar_negative_indexes.append(similar_negative_index)
# s24 = time()
positive_indexes = [j for (j, a) in enumerate(self.history_utterances) if
extract_speaker(a) == anchor_speaker and j != anchor_index]
# s25 = time()
anchor_embedding_tile = [anchor_embedding] * len(positive_indexes)
# s26 = time()
anchor_cos = batch_cosine_similarity(anchor_embedding_tile, self.history_embeddings[positive_indexes])
dissimilar_positive_index = positive_indexes[np.argsort(anchor_cos)[0]] # [:1]
dissimilar_positive_indexes.append(dissimilar_positive_index)
# s27 = time()
# s3 = time()
batch_x = np.vstack([
self.history_model_inputs[anchor_indexes],
self.history_model_inputs[dissimilar_positive_indexes],
self.history_model_inputs[similar_negative_indexes]
])
# s4 = time()
# for anchor, positive, negative in zip(history_utterances[anchor_indexes],
# history_utterances[dissimilar_positive_indexes],
# history_utterances[similar_negative_indexes]):
# print('anchor', os.path.basename(anchor),
# 'positive', os.path.basename(positive),
# 'negative', os.path.basename(negative))
# print('_' * 80)
# assert utterances as well positive != anchor.
anchor_speakers = [extract_speaker(a) for a in self.history_utterances[anchor_indexes]]
positive_speakers = [extract_speaker(a) for a in self.history_utterances[dissimilar_positive_indexes]]
negative_speakers = [extract_speaker(a) for a in self.history_utterances[similar_negative_indexes]]
assert len(anchor_indexes) == len(dissimilar_positive_indexes)
assert len(similar_negative_indexes) == len(dissimilar_positive_indexes)
assert list(self.history_utterances[dissimilar_positive_indexes]) != list(
self.history_utterances[anchor_indexes])
assert anchor_speakers == positive_speakers
assert negative_speakers != anchor_speakers
batch_y = np.zeros(shape=(len(batch_x), 1)) # dummy. sparse softmax needs something.
for a in anchor_speakers:
self.metadata_train_speakers[a] += 1
for a in positive_speakers:
self.metadata_train_speakers[a] += 1
for a in negative_speakers:
self.metadata_train_speakers[a] += 1
# s5 = time()
# print('1-2', s2 - s1)
# print('2-3', s3 - s2)
# print('3-4', s4 - s3)
# print('4-5', s5 - s4)
# print('21-22', (s22 - s21) * (batch_size // 3))
# print('22-23', (s23 - s22) * (batch_size // 3))
# print('23-24', (s24 - s23) * (batch_size // 3))
# print('24-25', (s25 - s24) * (batch_size // 3))
# print('25-26', (s26 - s25) * (batch_size // 3))
# print('26-27', (s27 - s26) * (batch_size // 3))
return batch_x, batch_y
def get_speaker_verification_data(self, anchor_speaker, num_different_speakers):
speakers = list(self.audio.speakers_to_utterances.keys())
anchor_utterances = []
positive_utterances = []
negative_utterances = []
negative_speakers = np.random.choice(list(set(speakers) - {anchor_speaker}), size=num_different_speakers)
assert [negative_speaker != anchor_speaker for negative_speaker in negative_speakers]
pos_utterances = np.random.choice(self.sp_to_utt_test[anchor_speaker], 2, replace=False)
neg_utterances = [np.random.choice(self.sp_to_utt_test[neg], 1, replace=True)[0] for neg in negative_speakers]
anchor_utterances.append(pos_utterances[0])
positive_utterances.append(pos_utterances[1])
negative_utterances.extend(neg_utterances)
# anchor and positive should have difference utterances (but same speaker!).
anc_pos = np.array([positive_utterances, anchor_utterances])
assert np.all(anc_pos[0, :] != anc_pos[1, :])
assert np.all(np.array([extract_speaker(s) for s in anc_pos[0, :]]) == np.array(
[extract_speaker(s) for s in anc_pos[1, :]]))
batch_x = np.vstack([
[sample_from_mfcc_file(u, self.max_length) for u in anchor_utterances],
[sample_from_mfcc_file(u, self.max_length) for u in positive_utterances],
[sample_from_mfcc_file(u, self.max_length) for u in negative_utterances]
])
batch_y = np.zeros(shape=(len(batch_x), 1)) # dummy. sparse softmax needs something.
return batch_x, batch_y
class TripletBatcher:
def __init__(self, kx_train, ky_train, kx_test, ky_test):
self.kx_train = kx_train
self.ky_train = ky_train
self.kx_test = kx_test
self.ky_test = ky_test
speakers_list = sorted(set(ky_train.argmax(axis=1)))
num_different_speakers = len(speakers_list)
assert speakers_list == sorted(set(ky_test.argmax(axis=1))) # train speakers = test speakers.
assert speakers_list == list(range(num_different_speakers))
self.train_indices_per_speaker = {}
self.test_indices_per_speaker = {}
for speaker_id in speakers_list:
self.train_indices_per_speaker[speaker_id] = list(np.where(ky_train.argmax(axis=1) == speaker_id)[0])
self.test_indices_per_speaker[speaker_id] = list(np.where(ky_test.argmax(axis=1) == speaker_id)[0])
# check.
# print(sorted(sum([v for v in self.train_indices_per_speaker.values()], [])))
# print(range(len(ky_train)))
assert sorted(sum([v for v in self.train_indices_per_speaker.values()], [])) == sorted(range(len(ky_train)))
assert sorted(sum([v for v in self.test_indices_per_speaker.values()], [])) == sorted(range(len(ky_test)))
self.speakers_list = speakers_list
def select_speaker_data(self, speaker, n, is_test):
x = self.kx_test if is_test else self.kx_train
indices_per_speaker = self.test_indices_per_speaker if is_test else self.train_indices_per_speaker
indices = np.random.choice(indices_per_speaker[speaker], size=n)
return x[indices]
def get_batch(self, batch_size, is_test=False):
# y = self.ky_test if is_test else self.ky_train
two_different_speakers = np.random.choice(self.speakers_list, size=2, replace=False)
anchor_positive_speaker = two_different_speakers[0]
negative_speaker = two_different_speakers[1]
assert negative_speaker != anchor_positive_speaker
batch_x = np.vstack([
self.select_speaker_data(anchor_positive_speaker, batch_size // 3, is_test),
self.select_speaker_data(anchor_positive_speaker, batch_size // 3, is_test),
self.select_speaker_data(negative_speaker, batch_size // 3, is_test)
])
batch_y = np.zeros(shape=(len(batch_x), len(self.speakers_list)))
return batch_x, batch_y
class TripletBatcherMiner(TripletBatcher):
def __init__(self, kx_train, ky_train, kx_test, ky_test, model: DeepSpeakerModel):
super().__init__(kx_train, ky_train, kx_test, ky_test)
self.model = model
self.num_evaluations_to_find_best_batch = 10
def get_batch(self, batch_size, is_test=False):
if is_test:
return super().get_batch(batch_size, is_test)
max_loss = 0
max_batch = None, None
for i in range(self.num_evaluations_to_find_best_batch):
bx, by = super().get_batch(batch_size, is_test=False) # only train here.
loss = self.model.m.evaluate(bx, by, batch_size=batch_size, verbose=0)
if loss > max_loss:
max_loss = loss
max_batch = bx, by
return max_batch
class TripletBatcherSelectHardNegatives(TripletBatcher):
def __init__(self, kx_train, ky_train, kx_test, ky_test, model: DeepSpeakerModel):
super().__init__(kx_train, ky_train, kx_test, ky_test)
self.model = model
def get_batch(self, batch_size, is_test=False, predict=None):
if predict is None:
predict = self.model.m.predict
from deep_speaker.test import batch_cosine_similarity
num_triplets = batch_size // 3
inputs = []
k = 2 # do not change this.
for speaker in self.speakers_list:
inputs.append(self.select_speaker_data(speaker, n=k, is_test=is_test))
inputs = np.array(inputs) # num_speakers * [k, num_frames, num_fbanks, 1].
embeddings = predict(np.vstack(inputs))
assert embeddings.shape[-1] == 512
# (speaker, utterance, 512)
embeddings = np.reshape(embeddings, (len(self.speakers_list), k, 512))
cs = batch_cosine_similarity(embeddings[:, 0], embeddings[:, 1])
arg_sort = np.argsort(cs)
assert len(arg_sort) > num_triplets
anchor_speakers = arg_sort[0:num_triplets]
anchor_embeddings = embeddings[anchor_speakers, 0]
negative_speakers = sorted(set(self.speakers_list) - set(anchor_speakers))
negative_embeddings = embeddings[negative_speakers, 0]
selected_negative_speakers = []
for anchor_embedding in anchor_embeddings:
cs_negative = [batch_cosine_similarity([anchor_embedding], neg) for neg in negative_embeddings]
selected_negative_speakers.append(negative_speakers[int(np.argmax(cs_negative))])
# anchor with frame 0.
# positive with frame 1.
# negative with frame 0.
assert len(set(selected_negative_speakers).intersection(anchor_speakers)) == 0
negative = inputs[selected_negative_speakers, 0]
positive = inputs[anchor_speakers, 1]
anchor = inputs[anchor_speakers, 0]
batch_x = np.vstack([anchor, positive, negative])
batch_y = np.zeros(shape=(len(batch_x), len(self.speakers_list)))
return batch_x, batch_y
class TripletEvaluator:
def __init__(self, kx_test, ky_test):
self.kx_test = kx_test
self.ky_test = ky_test
speakers_list = sorted(set(ky_test.argmax(axis=1)))
num_different_speakers = len(speakers_list)
assert speakers_list == list(range(num_different_speakers))
self.test_indices_per_speaker = {}
for speaker_id in speakers_list:
self.test_indices_per_speaker[speaker_id] = list(np.where(ky_test.argmax(axis=1) == speaker_id)[0])
assert sorted(sum([v for v in self.test_indices_per_speaker.values()], [])) == sorted(range(len(ky_test)))
self.speakers_list = speakers_list
def _select_speaker_data(self, speaker):
indices = np.random.choice(self.test_indices_per_speaker[speaker], size=1)
return self.kx_test[indices]
def get_speaker_verification_data(self, positive_speaker, num_different_speakers):
all_negative_speakers = list(set(self.speakers_list) - {positive_speaker})
assert len(self.speakers_list) - 1 == len(all_negative_speakers)
negative_speakers = np.random.choice(all_negative_speakers, size=num_different_speakers, replace=False)
assert positive_speaker not in negative_speakers
anchor = self._select_speaker_data(positive_speaker)
positive = self._select_speaker_data(positive_speaker)
data = [anchor, positive]
data.extend([self._select_speaker_data(n) for n in negative_speakers])
return np.vstack(data)
if __name__ == '__main__':
np.random.seed(123)
ltb = LazyTripletBatcher(working_dir='/Users/premy/deep-speaker/',
max_length=NUM_FRAMES,
model=DeepSpeakerModel())
for i in range(1000):
print(i)
start = time()
ltb.get_batch_train(batch_size=9)
print(time() - start)
# ltb.get_batch(batch_size=96)
|