File size: 10,741 Bytes
aed64b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import logging
import os

import numpy as np
import tensorflow as tf
# pylint: disable=E0611,E0401
import tensorflow.keras.backend as K
# pylint: disable=E0611,E0401
from tensorflow.keras import layers, regularizers
# pylint: disable=E0611,E0401
from tensorflow.keras.layers import (
    BatchNormalization,
    Conv2D,
    Dense,
    Dropout,
    Input,
    Lambda,
    Reshape,
)
# pylint: disable=E0611,E0401
from tensorflow.keras.models import Model
# pylint: disable=E0611,E0401
from tensorflow.keras.optimizers import Adam

from deep_speaker.constants import NUM_FBANKS, SAMPLE_RATE, NUM_FRAMES
from deep_speaker.triplet_loss import deep_speaker_loss

logger = logging.getLogger(__name__)


@tf.function
def tf_normalize(data, ndims, eps=0, adjusted=False):
    data = tf.convert_to_tensor(data, name='data')

    reduce_dims = [-i - 1 for i in range(ndims)]
    # pylint: disable=E1123,E1120
    data = tf.cast(data, dtype=tf.dtypes.float32)
    data_num = tf.reduce_prod(data.shape[-ndims:])
    data_mean = tf.reduce_mean(data, axis=reduce_dims, keepdims=True)

    # Apply a minimum normalization that protects us against uniform images.
    stddev = tf.math.reduce_std(data, axis=reduce_dims, keepdims=True)
    adjusted_stddev = stddev
    if adjusted:
        min_stddev = tf.math.rsqrt(tf.cast(data_num, tf.dtypes.float32))
        eps = tf.maximum(eps, min_stddev)
    if eps > 0:
        adjusted_stddev = tf.maximum(adjusted_stddev, eps)

    return (data - data_mean) / adjusted_stddev


@tf.function
def tf_fbank(samples):
    """
    Compute Mel-filterbank energy features from an audio signal.
    See python_speech_features.fbank
    """
    frame_length = int(0.025 * SAMPLE_RATE)
    frame_step = int(0.01 * SAMPLE_RATE)
    fft_length = 512
    fft_bins = fft_length // 2 + 1

    pre_emphasis = samples[:, 1:] - 0.97 * samples[:, :-1]

    # Original implementation from python_speech_features
    # frames = tf.expand_dims(sigproc.framesig(preemphasis[0], frame_length,
    # frame_step, winfunc=lambda x: np.ones((x,))), 0)
    # powspec = sigproc.powspec(frames, fft_length)

    # Tensorflow impl #1, using manually-split frames and rfft
    # spec = tf.abs(tf.signal.rfft(frames, [fft_length]))
    # powspec = tf.square(spec) / fft_length

    # Tensorflow impl #2, using stft to handle framing automatically
    # (There is a one-off mismatch on the number of frames on the resulting tensor, but I guess this is ok)
    spec = tf.abs(tf.signal.stft(pre_emphasis, frame_length, frame_step, fft_length, window_fn=tf.ones))
    powspec = tf.square(spec) / fft_length

    # Matrix to transform spectrum to mel-frequencies

    # Original implementation from python_speech_features
    # linear_to_mel_weight_matrix = get_filterbanks(NUM_FBANKS, fft_length,
    # SAMPLE_RATE, 0, SAMPLE_RATE/2).astype(np.float32).T

    linear_to_mel_weight_matrix = tf.signal.linear_to_mel_weight_matrix(
        num_mel_bins=NUM_FBANKS,
        num_spectrogram_bins=fft_bins,
        sample_rate=SAMPLE_RATE,
        lower_edge_hertz=0,
        upper_edge_hertz=SAMPLE_RATE / 2,
    )

    feat = tf.matmul(powspec, linear_to_mel_weight_matrix)
    # feat = tf.where(feat == 0, np.finfo(np.float32).eps, feat)
    return feat


class DeepSpeakerModel:

    # I thought it was 3 but maybe energy is added at a 4th dimension.
    # would be better to have 4 dimensions:
    # MFCC, DIFF(MFCC), DIFF(DIFF(MFCC)), ENERGIES (probably tiled across the frequency domain).
    # this seems to help match the parameter counts.
    def __init__(
            self,
            batch_input_shape=(None, NUM_FRAMES, NUM_FBANKS, 1),
            include_softmax=False,
            num_speakers_softmax=None,
            pcm_input=False
    ):
        if pcm_input:
            batch_input_shape = None
        self.include_softmax = include_softmax
        if self.include_softmax:
            assert num_speakers_softmax > 0
        self.clipped_relu_count = 0

        # http://cs231n.github.io/convolutional-networks/
        # conv weights
        # #params = ks * ks * nb_filters * num_channels_input

        # Conv128-s
        # 5*5*128*128/2+128
        # ks*ks*nb_filters*channels/strides+bias(=nb_filters)

        # take 100 ms -> 4 frames.
        # if signal is 3 seconds, then take 100ms per 100ms and average out this network.
        # 8*8 = 64 features.

        # used to share all the layers across the inputs

        # num_frames = K.shape() - do it dynamically after.

        if pcm_input:
            batch_input_shape = batch_input_shape or (None, None)  # Batch-size, num-samples
            inputs = Input(batch_shape=batch_input_shape, name='raw_inputs')
            x = inputs
            x = Lambda(tf_fbank)(x)
            x = Lambda(lambda x_: tf_normalize(x_, 1, 1e-12))(x)
            x = Lambda(lambda x_: tf.expand_dims(x_, axis=-1))(x)
        else:
            batch_input_shape = batch_input_shape or (None, None, NUM_FBANKS, 1)
            inputs = Input(batch_shape=batch_input_shape, name='input')
            x = inputs

        x = self.cnn_component(x)

        x = Reshape((-1, 2048))(x)
        # Temporal average layer. axis=1 is time.
        x = Lambda(lambda y: K.mean(y, axis=1), name='average')(x)
        if include_softmax:
            logger.info('Including a Dropout layer to reduce overfitting.')
            # used for softmax because the dataset we pre-train on might be too small. easy to overfit.
            x = Dropout(0.5)(x)
        x = Dense(512, name='affine')(x)
        if include_softmax:
            # Those weights are just when we train on softmax.
            x = Dense(num_speakers_softmax, activation='softmax')(x)
        else:
            # Does not contain any weights.
            x = Lambda(lambda y: K.l2_normalize(y, axis=1), name='ln')(x)
        self.m = Model(inputs, x, name='ResCNN')

    def keras_model(self):
        return self.m

    def get_weights(self):
        w = self.m.get_weights()
        if self.include_softmax:
            w.pop()  # last 2 are the W_softmax and b_softmax.
            w.pop()
        return w

    def clipped_relu(self, inputs):
        relu = Lambda(lambda y: K.minimum(K.maximum(y, 0), 20), name=f'clipped_relu_{self.clipped_relu_count}')(inputs)
        self.clipped_relu_count += 1
        return relu

    def identity_block(self, input_tensor, kernel_size, filters, stage, block):
        conv_name_base = f'res{stage}_{block}_branch'

        x = Conv2D(filters,
                   kernel_size=kernel_size,
                   strides=1,
                   activation=None,
                   padding='same',
                   kernel_initializer='glorot_uniform',
                   kernel_regularizer=regularizers.l2(l=0.0001),
                   name=conv_name_base + '_2a')(input_tensor)
        x = BatchNormalization(name=conv_name_base + '_2a_bn')(x)
        x = self.clipped_relu(x)

        x = Conv2D(
            filters,
            kernel_size=kernel_size,
            strides=1,
            activation=None,
            padding='same',
            kernel_initializer='glorot_uniform',
            kernel_regularizer=regularizers.l2(l=0.0001),
            name=conv_name_base + '_2b',
        )(x)
        x = BatchNormalization(name=conv_name_base + '_2b_bn')(x)

        x = self.clipped_relu(x)

        x = layers.add([x, input_tensor])
        x = self.clipped_relu(x)
        return x

    def conv_and_res_block(self, inp, filters, stage):
        conv_name = 'conv{}-s'.format(filters)
        # TODO: why kernel_regularizer?
        o = Conv2D(filters,
                   kernel_size=5,
                   strides=2,
                   activation=None,
                   padding='same',
                   kernel_initializer='glorot_uniform',
                   kernel_regularizer=regularizers.l2(l=0.0001), name=conv_name)(inp)
        o = BatchNormalization(name=conv_name + '_bn')(o)
        o = self.clipped_relu(o)
        for i in range(3):
            o = self.identity_block(o, kernel_size=3, filters=filters, stage=stage, block=i)
        return o

    def cnn_component(self, inp):
        x = self.conv_and_res_block(inp, 64, stage=1)
        x = self.conv_and_res_block(x, 128, stage=2)
        x = self.conv_and_res_block(x, 256, stage=3)
        x = self.conv_and_res_block(x, 512, stage=4)
        return x

    def set_weights(self, w):
        for layer, layer_w in zip(self.m.layers, w):
            layer.set_weights(layer_w)
            logger.info(f'Setting weights for [{layer.name}]...')


def main():
    # Looks correct to me.
    # I have 37K but paper reports 41K. which is not too far.
    dsm = DeepSpeakerModel()
    dsm.m.summary()

    # I suspect num frames to be 32.
    # Then fbank=64, then total would be 32*64 = 2048.
    # plot_model(dsm.m, to_file='model.png', dpi=300, show_shapes=True, expand_nested=True)


def _train():
    # x = np.random.uniform(size=(6, 32, 64, 4))  # 6 is multiple of 3.
    # y_softmax = np.random.uniform(size=(6, 100))
    # dsm = DeepSpeakerModel(batch_input_shape=(None, 32, 64, 4), include_softmax=True, num_speakers_softmax=100)
    # dsm.m.compile(optimizer=Adam(lr=0.01), loss='categorical_crossentropy')
    # print(dsm.m.predict(x).shape)
    # print(dsm.m.evaluate(x, y_softmax))
    # w = dsm.get_weights()
    dsm = DeepSpeakerModel(batch_input_shape=(None, 32, 64, 4), include_softmax=False)
    # dsm.m.set_weights(w)
    dsm.m.compile(optimizer=Adam(lr=0.01), loss=deep_speaker_loss)

    # it works!!!!!!!!!!!!!!!!!!!!
    # unit_batch_size = 20
    # anchor = np.ones(shape=(unit_batch_size, 32, 64, 4))
    # positive = np.array(anchor)
    # negative = np.ones(shape=(unit_batch_size, 32, 64, 4)) * (-1)
    # batch = np.vstack((anchor, positive, negative))
    # x = batch
    # y = np.zeros(shape=(len(batch), 512))  # not important.
    # print('Starting to fit...')
    # while True:
    #     print(dsm.m.train_on_batch(x, y))

    # should not work... and it does not work!
    unit_batch_size = 20
    negative = np.ones(shape=(unit_batch_size, 32, 64, 4)) * (-1)
    batch = np.vstack((negative, negative, negative))
    x = batch
    y = np.zeros(shape=(len(batch), 512))  # not important.
    print('Starting to fit...')
    while True:
        print(dsm.m.train_on_batch(x, y))


def _test_checkpoint_compatibility():
    dsm = DeepSpeakerModel(batch_input_shape=(None, 32, 64, 4), include_softmax=True, num_speakers_softmax=10)
    dsm.m.save_weights('test.h5')
    dsm = DeepSpeakerModel(batch_input_shape=(None, 32, 64, 4), include_softmax=False)
    dsm.m.load_weights('test.h5', by_name=True)
    os.remove('test.h5')


if __name__ == '__main__':
    _test_checkpoint_compatibility()