import gradio as gr import torch from threading import Thread from typing import Iterator from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = 2048 base_model_name = "deepseek-ai/deepseek-coder-1.3b-instruct" model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float32, device_map="cpu", low_cpu_mem_usage=True) tokenizer = AutoTokenizer.from_pretrained(base_model_name) def format_prompt(message, history): system_prompt = "You are Deepseekcoder, you are an expert programmer that helps to write code based on the user request, with concise explanations." prompt = [] prompt.append({"role": "system", "content": system_prompt}) for user_prompt, bot_response in history: prompt.extend([{"role": "user", "content": user_prompt}, {"role": "assistant", "content": bot_response}]) prompt.append({"role": "user", "content": message}) return prompt def generate(prompt: str, history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.3, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1 ) -> Iterator[str]: temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 formatted_prompt = [] formatted_prompt = format_prompt(prompt, history) input_ids = tokenizer.apply_chat_template(formatted_prompt, return_tensors="pt", add_generation_prompt=True) if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=15.0, skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict({"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=False, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, eos_token_id=tokenizer.eos_token_id) t = Thread(target=model.generate, kwargs=generation_kwargs ) t.start() outputs = [] for chunk in streamer: outputs.append(chunk) yield "".join(outputs).replace("<|EOT|>","") mychatbot = gr.Chatbot(layout="bubble", avatar_images=["user.png", "botds.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,) additional_inputs = additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=512, ), gr.Slider( label="Temperature", minimum=0, maximum=1.0, step=0.1, value=0.3, ), gr.Slider( label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1, )] iface = gr.ChatInterface(fn=generate, chatbot=mychatbot, additional_inputs=additional_inputs, description=" Running on CPU. The response may be slow for cpu environments. 🙏🏻", retry_btn=None, undo_btn=None ) with gr.Blocks() as demo: gr.HTML("