from huggingface_hub import InferenceClient import gradio as gr client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def format_prompt(message, history): prompt = "<|system|>\n\n" for user_prompt, bot_response in history: prompt += f"<|user|>\n {user_prompt} \n" prompt += f"<|assistant|>\n {bot_response} \n\n " prompt += f"<|user|>\n {message} \n<|assistant|>" return prompt def generate( prompt, history, temperature=0.1, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output # return output mychatbot = gr.Chatbot( avatar_images=["./user.png", "./botz.png"], bubble_full_width=False, show_label=False, show_copy_button=True,) demo = gr.ChatInterface(fn=generate, chatbot=mychatbot, title="Tomoniai Zephyr 7b Chat", retry_btn=None, undo_btn=None ) demo.queue().launch(show_api=False)