Spaces:
Sleeping
Sleeping
File size: 9,893 Bytes
04f8e39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from flashsloth.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, LEARNABLE_TOKEN, LEARNABLE_TOKEN_INDEX
from flashsloth.conversation import conv_templates, SeparatorStyle
from flashsloth.model.builder import load_pretrained_model
from flashsloth.utils import disable_torch_init
from flashsloth.mm_utils import tokenizer_image_token, process_images, process_images_hd_inference, get_model_name_from_path, KeywordsStoppingCriteria
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import math
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
# Custom dataset class
class CustomDataset(Dataset):
def __init__(self, questions, image_folder, tokenizer, image_processor, model_config):
self.questions = questions
self.image_folder = image_folder
self.tokenizer = tokenizer
self.image_processor = image_processor
self.model_config = model_config
def __getitem__(self, index):
line = self.questions[index]
image_file = line["image"]
qs = line["text"]
if self.model_config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
qs = qs + LEARNABLE_TOKEN
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
image = Image.open(os.path.join(self.image_folder, image_file)).convert('RGB')
if self.model_config.image_hd:
image_tensor = process_images_hd_inference([image], self.image_processor, self.model_config)[0]
else:
image_tensor = process_images([image], self.image_processor, self.model_config)[0]
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
return input_ids, image_tensor
def __len__(self):
return len(self.questions)
# DataLoader
def create_data_loader(questions, image_folder, tokenizer, image_processor, model_config, batch_size=1, num_workers=4):
assert batch_size == 1, "batch_size must be 1"
dataset = CustomDataset(questions, image_folder, tokenizer, image_processor, model_config)
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False)
return data_loader
def eval_model(args):
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
if 'phi2' in model_name.lower() or 'phi-2' in model_name.lower():
keywords = ['</s>']
elif 'qwen1.5' in model_name.lower():
keywords = ['<|im_end|>']
# print('before:', model.generation_config)
model.generation_config.repetition_penalty = 1.
model.generation_config.top_p = 1. if args.top_p is None else args.top_p
model.generation_config.do_sample = True if args.temperature > 0 else False
model.generation_config.temperature = args.temperature if args.temperature > 0 else 1.
model.generation_config.num_beams = args.num_beams
model.generation_config.max_new_tokens = args.max_new_tokens
model.generation_config.use_cache = True
model.generation_config.pad_token_id = tokenizer.eos_token_id
# print('after:', model.generation_config)
elif 'phi3' in model_name.lower():
keywords = ['<|end|>']
else:
keywords = ['</s>']
# some bugs will be fixed -oy
# model.generation_config.repetition_penalty = 1.
# model.generation_config.top_p = 1. if args.top_p is None else args.top_p
# model.generation_config.do_sample = True if args.temperature > 0 else False
# model.generation_config.temperature = args.temperature if args.temperature > 0 else 1.
# model.generation_config.num_beams = args.num_beams
# model.generation_config.max_new_tokens = args.max_new_tokens
# model.generation_config.use_cache = True
# model.generation_config.pad_token_id = tokenizer.eos_token_id
# print('1:', model.generation_config)
# quit()
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
answers_file = os.path.expanduser(args.answers_file)
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
ans_file = open(answers_file, "w")
if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
args.conv_mode = args.conv_mode + '_mmtag'
print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')
data_loader = create_data_loader(questions, args.image_folder, tokenizer, image_processor, model.config)
for (input_ids, image_tensor), line in tqdm(zip(data_loader, questions), total=len(questions)):
idx = line["question_id"]
cur_prompt = line["text"]
input_ids = input_ids.to(device='cuda', non_blocking=True)
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
if 'phi2' in model_name.lower() or 'phi-2' in model_name.lower():
output_ids = model.generate(
input_ids,
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
max_new_tokens=args.max_new_tokens,
# eos_token_id=tokenizer.eos_token_id,
stopping_criteria=[stopping_criteria],
use_cache=True,
)
elif 'qwen1.5' in model_name.lower():
output_ids = model.generate(
input_ids,
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
stopping_criteria=[stopping_criteria],
)
elif 'phi3' in model_name.lower():
output_ids = model.generate(
input_ids,
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
stopping_criteria=[stopping_criteria],
do_sample=True if args.temperature > 0 else False,
temperature = args.temperature if args.temperature > 0 else 1. ,
num_beams=args.num_beams,
max_new_tokens=args.max_new_tokens,
use_cache = True,
pad_token_id = tokenizer.eos_token_id,
top_p = 1. if args.top_p is None else args.top_p ,
repetition_penalty = 1. ,
)
else:
output_ids = model.generate(
input_ids,
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
max_new_tokens=args.max_new_tokens,
# eos_token_id=tokenizer.eos_token_id,
stopping_criteria=[stopping_criteria],
use_cache=True,
)
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
ans_id = shortuuid.uuid()
ans_file.write(json.dumps({"question_id": idx,
"prompt": cur_prompt,
"text": outputs,
"answer_id": ans_id,
"model_id": model_name,
"metadata": {}}) + "\n")
# ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-folder", type=str, default="")
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
parser.add_argument("--conv-mode", type=str, default="llava_v1")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--max_new_tokens", type=int, default=2000)
args = parser.parse_args()
eval_model(args)
|