File size: 6,297 Bytes
04f8e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright 2024 Zhenwei Shao and MILVLG team.
# Licensed under the Apache License, Version 2.0.


from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn

from transformers import AutoConfig, AutoModelForCausalLM

from .phi2.modeling_phi import PhiConfig, PhiModel, PhiForCausalLM,PhiPreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM

class FlashSlothConfig(PhiConfig):
    model_type = "flashsloth"

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.image_token_index = getattr(self, "image_token_index", 50297)
        self.image_token = getattr(self, "image_token", "<image>")


class FlashSlothModel(LlavaMetaModel, PhiModel):
    config_class = FlashSlothConfig

    def __init__(self, config: FlashSlothConfig):
        super(FlashSlothModel, self).__init__(config)


class FlashSlothForCausalLM(PhiPreTrainedModel, LlavaMetaForCausalLM):
    """FlashSloth for Causal Language Modeling."""

    # _keys_to_ignore_on_load_missing = [""]
    # _keys_to_ignore_on_load_unexpected = [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
    config_class = FlashSlothConfig

    def __init__(self, config: FlashSlothConfig) -> None:
        super().__init__(config)

        self.model = FlashSlothModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
        config =self.config
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self) -> nn.Linear:
        return self.lm_head

    def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
        self.lm_head = new_embeddings

    def get_model(self):
        return self.model

    def get_decoder(self):
        return self.model
    
    def set_decoder(self, decoder):
        self.model = decoder
    
    def image_preprocess(self, images):
        return self.get_vision_tower().image_processor(images)['pixel_values']

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        learnable_tokens = self.model.get_learnabletoken()
        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels,
                insert_place, 
                image_features, 
                learnable_token_len,
                modal,
                question_token_ranges

            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                labels,
                images,
                learnable_tokens,
                'phi2',

            )

        outputs = self.model(
            input_ids=input_ids,
            past_key_values=past_key_values, 
            attention_mask=attention_mask,
            position_ids=position_ids, 
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            insert_place=insert_place,
            image_features=image_features,
            learnable_token_len=learnable_token_len,
            modal = modal,
            question_token_ranges = question_token_ranges
            )
        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)
        if not return_dict:
            loss = None
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        images = kwargs.pop("images", None)
        _inputs = super().prepare_inputs_for_generation(
            input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
        )
        if images is not None:
            _inputs['images'] = images
        return _inputs

AutoConfig.register("flashsloth", FlashSlothConfig)
AutoModelForCausalLM.register(FlashSlothConfig, FlashSlothForCausalLM)