File size: 5,670 Bytes
04f8e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright 2024 Zhenwei Shao and MILVLG team.
# Licensed under the Apache License, Version 2.0.

# Adopted from https://github.com/haotian-liu/LLaVA.

import torch
import torch.nn as nn

from typing import Dict, Optional, Union
import numpy as np

from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig

from .siglip.image_processing_flashsloth import ImpImageProcessor
from .siglip.modeling_siglip import SiglipVisionModel
from .siglip.configuration_siglip import SiglipVisionConfig


class CLIPVisionTower(nn.Module):
    def __init__(self, vision_tower, args, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.vision_tower_name = vision_tower
        self.select_layer = args.mm_vision_select_layer
        self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')

        if not delay_load:
            self.load_model()
        else:
            self.cfg_only = SiglipVisionConfig.from_pretrained(self.vision_tower_name)

    def load_model(self):
        if self.is_loaded:
            return
        
        # It's a hacky way to check if model is initialized under meta device
        # context, which will be enabled when loading trained model by huggingface 
        # `from_pretrained` api. In the case that a full model with vision tower is
        # loaded, there will be a warning if vision tower is loaded to cpu here. So we
        # set `device_map` to `auto` in order to avoid the warning.
        # [Edited by zhenwei - 2024-02-02 13:03]
        is_meta = getattr(nn.Linear(1, 1, bias=False).weight, 'is_meta', False)
        if 'siglip' in self.vision_tower_name:
            # "google/siglip-so400m-patch14-384"
            self.image_processor = ImpImageProcessor()
            if is_meta:
                # cfg = SiglipVisionConfig.from_pretrained(self.vision_tower_name)
                # self.vision_tower = SiglipVisionModel(cfg)
                self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name, device_map='auto')
            else:
                self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
            del self.vision_tower.vision_model.encoder.layers[(self.select_layer + 1):]
            self.vision_tower.vision_model.post_layernorm = nn.Identity()
            self.vision_tower.vision_model.head = nn.Identity()
        else:
            self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
            if is_meta:
                # cfg = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
                # self.vision_tower = CLIPVisionModel(cfg)
                self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map='auto')
            else:
                self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
            del self.vision_tower.vision_model.encoder.layers[(self.select_layer + 1):]
        
        self.vision_tower.requires_grad_(False)
        self.vision_tower.eval()

        self.is_loaded = True

    def feature_select(self, image_forward_outs):
        # image_features = image_forward_outs.hidden_states[self.select_layer]
        image_features = image_forward_outs.hidden_states[-1]
        if self.select_feature == 'patch':
            image_features = image_features[:, -self.num_patches:]
            assert image_features.shape[-2] == self.num_patches, f'select_feature=patch, image_features.shape[-2]={image_features.shape[-2]} != num_patches={self.num_patches}'
        elif self.select_feature == 'cls_patch':
            image_features = image_features
            assert image_features.shape[-2] == self.num_patches + 1, f'select_feature=cls_patch, image_features.shape[-2]={image_features.shape[-2]} != num_patches+1={self.num_patches+1}'
        else:
            raise ValueError(f'Unexpected select feature: {self.select_feature}')
        return image_features

    @torch.no_grad()
    def forward(self, images):
        # assert self.num_patches == 729
        if type(images) is list:
            image_features = []
            for image in images:
                image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
                image_feature = self.feature_select(image_forward_out).to(image.dtype)
                # image_feature = image_forward_out.last_hidden_state.to(image.dtype)
                image_features.append(image_feature)
        else:
            image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
            image_features = self.feature_select(image_forward_outs).to(images.dtype)
            # image_features = image_forward_outs.last_hidden_state.to(images.dtype)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        for p in self.vision_tower.parameters():
            return p.dtype

    @property
    def device(self):
        for p in self.vision_tower.parameters():
            return p.device
    
    @property
    def is_meta(self):
        return self.device.type == 'meta'

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2