Tongbo's picture
Upload folder using huggingface_hub
04f8e39 verified
raw
history blame
6.3 kB
# Copyright 2024 Zhenwei Shao and MILVLG team.
# Licensed under the Apache License, Version 2.0.
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers import AutoConfig, AutoModelForCausalLM
from .phi2.modeling_phi import PhiConfig, PhiModel, PhiForCausalLM,PhiPreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
class FlashSlothConfig(PhiConfig):
model_type = "flashsloth"
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.image_token_index = getattr(self, "image_token_index", 50297)
self.image_token = getattr(self, "image_token", "<image>")
class FlashSlothModel(LlavaMetaModel, PhiModel):
config_class = FlashSlothConfig
def __init__(self, config: FlashSlothConfig):
super(FlashSlothModel, self).__init__(config)
class FlashSlothForCausalLM(PhiPreTrainedModel, LlavaMetaForCausalLM):
"""FlashSloth for Causal Language Modeling."""
# _keys_to_ignore_on_load_missing = [""]
# _keys_to_ignore_on_load_unexpected = [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
config_class = FlashSlothConfig
def __init__(self, config: FlashSlothConfig) -> None:
super().__init__(config)
self.model = FlashSlothModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
config =self.config
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self) -> nn.Linear:
return self.lm_head
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
self.lm_head = new_embeddings
def get_model(self):
return self.model
def get_decoder(self):
return self.model
def set_decoder(self, decoder):
self.model = decoder
def image_preprocess(self, images):
return self.get_vision_tower().image_processor(images)['pixel_values']
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
learnable_tokens = self.model.get_learnabletoken()
if inputs_embeds is None:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels,
insert_place,
image_features,
learnable_token_len,
modal,
question_token_ranges
) = self.prepare_inputs_labels_for_multimodal(
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images,
learnable_tokens,
'phi2',
)
outputs = self.model(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
insert_place=insert_place,
image_features=image_features,
learnable_token_len=learnable_token_len,
modal = modal,
question_token_ranges = question_token_ranges
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
loss = None
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
_inputs = super().prepare_inputs_for_generation(
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
)
if images is not None:
_inputs['images'] = images
return _inputs
AutoConfig.register("flashsloth", FlashSlothConfig)
AutoModelForCausalLM.register(FlashSlothConfig, FlashSlothForCausalLM)