flashsloth / model /llava_arch.py
Tongbo's picture
Upload folder using huggingface_hub
04f8e39 verified
raw
history blame
22.2 kB
#origin
# Copyright 2024 Zhenwei Shao and MILVLG team.
# Licensed under the Apache License, Version 2.0.
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
from .multimodal_encoder.builder import build_vision_tower
from .multimodal_projector.builder import build_vision_projector
from flashsloth.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, LEARNABLE_TOKEN, LEARNABLE_TOKEN_INDEX
from flashsloth.model.pooling import build_pooling
class LlavaMetaModel:
def __init__(self, config):
super(LlavaMetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=False)
self.mm_projector = build_vision_projector(config)
self.pooling = build_pooling('attention', input_dim=1152, pooling_size=3, device=self.vision_tower.device, dtype=self.vision_tower.dtype)
# self.pooling = build_pooling('average', pooling_size=3, device=self.vision_tower.device)
# hack
# [Edited by zhenwei - 2024-02-02 20:36]
is_meta = getattr(nn.Linear(1, 1, bias=False).weight, 'is_meta', False)
if is_meta:
fake_dict = {}
for n, p in self.mm_projector.named_parameters():
fake_dict[n] = torch.zeros_like(p, device='cpu')
from transformers.modeling_utils import _load_state_dict_into_meta_model
_load_state_dict_into_meta_model(
self.mm_projector,
fake_dict,
fake_dict.keys(), # left for now but could be removed, see below
'',
fake_dict.keys(),
)
# self.mm_projector.to('cuda' if torch.cuda.is_available() else 'cpu')
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_vision_tower = vision_tower
if self.get_vision_tower() is None:
vision_tower = build_vision_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
else:
if fsdp is not None and len(fsdp) > 0:
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
vision_tower.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = vision_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
if getattr(self, 'mm_projector', None) is None:
self.mm_projector = build_vision_projector(self.config)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
self.pooling = build_pooling('attention', input_dim=1152, pooling_size=3, device=self.vision_tower.device, dtype=self.vision_tower.dtype)
# self.pooling = build_pooling('average', pooling_size=3, device=self.vision_tower.device)
class LlavaMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images)
image_features_origin = image_features
image_features = self.get_model().pooling(image_features)
image_features = self.get_model().mm_projector(image_features)
return image_features, image_features_origin
def extract_question_token_indices(self, labels, batch_indices, image_token_len, modal, version="phi2"):
"""
extract indices of all question tokens in the input sequence.
"""
if len(batch_indices) < 20:
version = "phi2"
else:
version = "plain"
if version == "plain":
question_token_ranges = []
for idx, (cur_labels, cur_batch_indices, num ) in enumerate(zip(labels, batch_indices, modal)):
question_token_ranges.append([(image_token_len + 1, batch_indices[idx][0])])
else:
question_token_ranges = []
for _, (cur_labels, cur_batch_indices, num ) in enumerate(zip(labels, batch_indices, modal)):
cur_question_ranges = []
#first question token is after the image token and before the first learnable token
if num == 1:#single modal
first_question_start = 32
elif num==2: #multi modal
first_question_start = 32 + image_token_len + 1
if len(cur_batch_indices) == 0:
print("cur_batch_indices", cur_batch_indices)
first_question_end = first_question_start
else:
first_question_end = cur_batch_indices[0]
if first_question_end < first_question_start:
print("first_question_start", first_question_start)
print("first_question_end", first_question_end)
print(batch_indices)
# assert first_question_end >= first_question_start
cur_question_ranges.append((first_question_start, first_question_end))
#subsequent question tokens are after the answer token and before the next learnable token
learnable_idx_counter = 1
for i in range(len(cur_labels) - 1):
if cur_labels[i] != IGNORE_INDEX and cur_labels[i + 1] == IGNORE_INDEX:
question_start = i + 3
try:
question_end = cur_batch_indices[learnable_idx_counter]
except IndexError:
print(f"learnable_idx_counter {learnable_idx_counter} exceeds cur_batch_indices length {len(cur_batch_indices)}")
break
learnable_idx_counter += 1
cur_question_ranges.append((question_start, question_end))
if len(cur_question_ranges) > len(cur_batch_indices):
cur_question_ranges = cur_question_ranges[:len(cur_batch_indices)]
elif len(cur_question_ranges) < len(cur_batch_indices):
last_range = cur_question_ranges[-1] if cur_question_ranges else (0, 0)
while len(cur_question_ranges) < len(cur_batch_indices):
cur_question_ranges.append(last_range)
question_token_ranges.append(cur_question_ranges)
return question_token_ranges
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels, images, learnable_tokens, model_version='phi2'
):
dot_tokens = self.get_model().embed_tokens(torch.full((learnable_tokens.size(0),), 764, device=input_ids.device, dtype=input_ids.dtype))
learnable_tokens = learnable_tokens + dot_tokens
modal = [2]
vision_tower = self.get_vision_tower()
if model_version == 'phi2':
if past_key_values is not None:
target_shape = past_key_values[0][0].shape[2] + 1
attention_mask = torch.ones(
(attention_mask.shape[0], target_shape),
dtype=attention_mask.dtype,
device=attention_mask.device
)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
return input_ids[:, -1:], position_ids, attention_mask, past_key_values, None, labels, [], None, learnable_tokens.shape[0], modal, None
if vision_tower is None or images is None or input_ids.shape[1] == 1:
return input_ids, None, None, past_key_values, None, None, [], None, learnable_tokens.shape[0], modal, None
else:
if vision_tower is None or images is None or input_ids.shape[1] == 1:
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
target_shape = past_key_values.seqlen_offset + 1
attention_mask = torch.cat((attention_mask, torch.ones(
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device
)), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
return input_ids, position_ids, attention_mask, past_key_values, None, labels, [], None, learnable_tokens.shape[0], modal
if type(images) is list or images.ndim == 5:
concat_images = torch.cat([image for image in images], dim=0)
image_features, image_features_origin = self.encode_images(concat_images)
split_sizes = [image.shape[0] for image in images]
image_features = torch.split(image_features, split_sizes, dim=0)
image_features_origin = torch.split(image_features_origin, split_sizes, dim=0)
image_features = [x.flatten(0, 1).to(self.device) for x in image_features]
image_features_origin = [x.flatten(0, 1).to(self.device) for x in image_features_origin]
image_features = torch.stack(image_features, dim=0)
image_features_origin = torch.stack(image_features_origin, dim=0)
else:
image_features, image_features_origin = self.encode_images(images)
image_features = image_features.to(self.device)
image_features_origin = image_features_origin.to(self.device)
batch_indices = []
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
modal =[]
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
num_learnables = (cur_input_ids == LEARNABLE_TOKEN_INDEX).sum()
num_specials = num_images + num_learnables
image_token_indices_origin = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
learnable_token_indices = torch.where(cur_input_ids == LEARNABLE_TOKEN_INDEX)[0].tolist() #[43]
all_special_indices = sorted(image_token_indices_origin+ learnable_token_indices)
image_token_len = image_features.shape[1] - 1
learnable_token_len = learnable_tokens.shape[0] -1
offset = 0
new_indices= []
for i, idx in enumerate(all_special_indices):
if idx in learnable_token_indices:
new_indices.append(idx + offset)
if idx in image_token_indices:
offset += image_token_len
if idx in learnable_token_indices:
offset += learnable_token_len
batch_indices.append(new_indices)
special_token_indices = sorted(image_token_indices + learnable_token_indices)
cur_input_ids_no_special = []
cur_labels = labels[batch_idx]
cur_labels_no_special = []
for i in range(len(special_token_indices) - 1):
cur_input_ids_no_special.append(cur_input_ids[special_token_indices[i]+1:special_token_indices[i+1]])
cur_labels_no_special.append(cur_labels[special_token_indices[i]+1:special_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_no_special]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_no_special))
cur_input_embeds_no_special = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_specials + 1):
cur_new_input_embeds.append(cur_input_embeds_no_special[i])
cur_new_labels.append(cur_labels_no_special[i])
if i < num_specials:
if special_token_indices[i+1] in image_token_indices:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
elif special_token_indices[i+1] in learnable_token_indices:
cur_new_input_embeds.append(learnable_tokens)
cur_new_labels.append(torch.full((learnable_tokens.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
else:
ValueError("token indices error")
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
if num_images == 0 :
cur_image_features = image_features[cur_image_idx]
cur_new_input_embeds = torch.cat([cur_new_input_embeds, cur_image_features[0:0]], dim=0)
cur_image_idx += 1
modal.append(1)
else:
modal.append(2)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
question_token_ranges = self.extract_question_token_indices(new_labels, batch_indices, image_token_len+1, modal)
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels, batch_indices, image_features_origin, learnable_tokens.shape[0], modal, question_token_ranges
def initialize_vision_tokenizer(self, model_args, tokenizer):
if tokenizer.convert_tokens_to_ids(LEARNABLE_TOKEN) == tokenizer.unk_token_id:
tokenizer.add_tokens([LEARNABLE_TOKEN], special_tokens=True)
print(f"Added {LEARNABLE_TOKEN} to tokenizer.")
else:
print(f"{LEARNABLE_TOKEN} already exists in the tokenizer.")
token_id = tokenizer.convert_tokens_to_ids(LEARNABLE_TOKEN)
print(f"Token ID for {LEARNABLE_TOKEN}: {token_id}")
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_im_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False