Spaces:
Sleeping
Sleeping
#origin | |
# Copyright 2024 Zhenwei Shao and MILVLG team. | |
# Licensed under the Apache License, Version 2.0. | |
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright: | |
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from abc import ABC, abstractmethod | |
import torch | |
import torch.nn as nn | |
from .multimodal_encoder.builder import build_vision_tower | |
from .multimodal_projector.builder import build_vision_projector | |
from flashsloth.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, LEARNABLE_TOKEN, LEARNABLE_TOKEN_INDEX | |
from flashsloth.model.pooling import build_pooling | |
class LlavaMetaModel: | |
def __init__(self, config): | |
super(LlavaMetaModel, self).__init__(config) | |
if hasattr(config, "mm_vision_tower"): | |
self.vision_tower = build_vision_tower(config, delay_load=False) | |
self.mm_projector = build_vision_projector(config) | |
self.pooling = build_pooling('attention', input_dim=1152, pooling_size=3, device=self.vision_tower.device, dtype=self.vision_tower.dtype) | |
# self.pooling = build_pooling('average', pooling_size=3, device=self.vision_tower.device) | |
# hack | |
# [Edited by zhenwei - 2024-02-02 20:36] | |
is_meta = getattr(nn.Linear(1, 1, bias=False).weight, 'is_meta', False) | |
if is_meta: | |
fake_dict = {} | |
for n, p in self.mm_projector.named_parameters(): | |
fake_dict[n] = torch.zeros_like(p, device='cpu') | |
from transformers.modeling_utils import _load_state_dict_into_meta_model | |
_load_state_dict_into_meta_model( | |
self.mm_projector, | |
fake_dict, | |
fake_dict.keys(), # left for now but could be removed, see below | |
'', | |
fake_dict.keys(), | |
) | |
# self.mm_projector.to('cuda' if torch.cuda.is_available() else 'cpu') | |
def get_vision_tower(self): | |
vision_tower = getattr(self, 'vision_tower', None) | |
if type(vision_tower) is list: | |
vision_tower = vision_tower[0] | |
return vision_tower | |
def initialize_vision_modules(self, model_args, fsdp=None): | |
vision_tower = model_args.vision_tower | |
mm_vision_select_layer = model_args.mm_vision_select_layer | |
mm_vision_select_feature = model_args.mm_vision_select_feature | |
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter | |
self.config.mm_vision_tower = vision_tower | |
if self.get_vision_tower() is None: | |
vision_tower = build_vision_tower(model_args) | |
if fsdp is not None and len(fsdp) > 0: | |
self.vision_tower = [vision_tower] | |
else: | |
self.vision_tower = vision_tower | |
else: | |
if fsdp is not None and len(fsdp) > 0: | |
vision_tower = self.vision_tower[0] | |
else: | |
vision_tower = self.vision_tower | |
vision_tower.load_model() | |
self.config.use_mm_proj = True | |
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') | |
self.config.mm_hidden_size = vision_tower.hidden_size | |
self.config.mm_vision_select_layer = mm_vision_select_layer | |
self.config.mm_vision_select_feature = mm_vision_select_feature | |
if getattr(self, 'mm_projector', None) is None: | |
self.mm_projector = build_vision_projector(self.config) | |
else: | |
# In case it is frozen by LoRA | |
for p in self.mm_projector.parameters(): | |
p.requires_grad = True | |
if pretrain_mm_mlp_adapter is not None: | |
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') | |
def get_w(weights, keyword): | |
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} | |
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) | |
self.pooling = build_pooling('attention', input_dim=1152, pooling_size=3, device=self.vision_tower.device, dtype=self.vision_tower.dtype) | |
# self.pooling = build_pooling('average', pooling_size=3, device=self.vision_tower.device) | |
class LlavaMetaForCausalLM(ABC): | |
def get_model(self): | |
pass | |
def get_vision_tower(self): | |
return self.get_model().get_vision_tower() | |
def encode_images(self, images): | |
image_features = self.get_model().get_vision_tower()(images) | |
image_features_origin = image_features | |
image_features = self.get_model().pooling(image_features) | |
image_features = self.get_model().mm_projector(image_features) | |
return image_features, image_features_origin | |
def extract_question_token_indices(self, labels, batch_indices, image_token_len, modal, version="phi2"): | |
""" | |
extract indices of all question tokens in the input sequence. | |
""" | |
if len(batch_indices) < 20: | |
version = "phi2" | |
else: | |
version = "plain" | |
if version == "plain": | |
question_token_ranges = [] | |
for idx, (cur_labels, cur_batch_indices, num ) in enumerate(zip(labels, batch_indices, modal)): | |
question_token_ranges.append([(image_token_len + 1, batch_indices[idx][0])]) | |
else: | |
question_token_ranges = [] | |
for _, (cur_labels, cur_batch_indices, num ) in enumerate(zip(labels, batch_indices, modal)): | |
cur_question_ranges = [] | |
#first question token is after the image token and before the first learnable token | |
if num == 1:#single modal | |
first_question_start = 32 | |
elif num==2: #multi modal | |
first_question_start = 32 + image_token_len + 1 | |
if len(cur_batch_indices) == 0: | |
print("cur_batch_indices", cur_batch_indices) | |
first_question_end = first_question_start | |
else: | |
first_question_end = cur_batch_indices[0] | |
if first_question_end < first_question_start: | |
print("first_question_start", first_question_start) | |
print("first_question_end", first_question_end) | |
print(batch_indices) | |
# assert first_question_end >= first_question_start | |
cur_question_ranges.append((first_question_start, first_question_end)) | |
#subsequent question tokens are after the answer token and before the next learnable token | |
learnable_idx_counter = 1 | |
for i in range(len(cur_labels) - 1): | |
if cur_labels[i] != IGNORE_INDEX and cur_labels[i + 1] == IGNORE_INDEX: | |
question_start = i + 3 | |
try: | |
question_end = cur_batch_indices[learnable_idx_counter] | |
except IndexError: | |
print(f"learnable_idx_counter {learnable_idx_counter} exceeds cur_batch_indices length {len(cur_batch_indices)}") | |
break | |
learnable_idx_counter += 1 | |
cur_question_ranges.append((question_start, question_end)) | |
if len(cur_question_ranges) > len(cur_batch_indices): | |
cur_question_ranges = cur_question_ranges[:len(cur_batch_indices)] | |
elif len(cur_question_ranges) < len(cur_batch_indices): | |
last_range = cur_question_ranges[-1] if cur_question_ranges else (0, 0) | |
while len(cur_question_ranges) < len(cur_batch_indices): | |
cur_question_ranges.append(last_range) | |
question_token_ranges.append(cur_question_ranges) | |
return question_token_ranges | |
def prepare_inputs_labels_for_multimodal( | |
self, input_ids, position_ids, attention_mask, past_key_values, labels, images, learnable_tokens, model_version='phi2' | |
): | |
dot_tokens = self.get_model().embed_tokens(torch.full((learnable_tokens.size(0),), 764, device=input_ids.device, dtype=input_ids.dtype)) | |
learnable_tokens = learnable_tokens + dot_tokens | |
modal = [2] | |
vision_tower = self.get_vision_tower() | |
if model_version == 'phi2': | |
if past_key_values is not None: | |
target_shape = past_key_values[0][0].shape[2] + 1 | |
attention_mask = torch.ones( | |
(attention_mask.shape[0], target_shape), | |
dtype=attention_mask.dtype, | |
device=attention_mask.device | |
) | |
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 | |
return input_ids[:, -1:], position_ids, attention_mask, past_key_values, None, labels, [], None, learnable_tokens.shape[0], modal, None | |
if vision_tower is None or images is None or input_ids.shape[1] == 1: | |
return input_ids, None, None, past_key_values, None, None, [], None, learnable_tokens.shape[0], modal, None | |
else: | |
if vision_tower is None or images is None or input_ids.shape[1] == 1: | |
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: | |
target_shape = past_key_values.seqlen_offset + 1 | |
attention_mask = torch.cat((attention_mask, torch.ones( | |
(attention_mask.shape[0], target_shape - attention_mask.shape[1]), | |
dtype=attention_mask.dtype, | |
device=attention_mask.device | |
)), dim=1) | |
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 | |
return input_ids, position_ids, attention_mask, past_key_values, None, labels, [], None, learnable_tokens.shape[0], modal | |
if type(images) is list or images.ndim == 5: | |
concat_images = torch.cat([image for image in images], dim=0) | |
image_features, image_features_origin = self.encode_images(concat_images) | |
split_sizes = [image.shape[0] for image in images] | |
image_features = torch.split(image_features, split_sizes, dim=0) | |
image_features_origin = torch.split(image_features_origin, split_sizes, dim=0) | |
image_features = [x.flatten(0, 1).to(self.device) for x in image_features] | |
image_features_origin = [x.flatten(0, 1).to(self.device) for x in image_features_origin] | |
image_features = torch.stack(image_features, dim=0) | |
image_features_origin = torch.stack(image_features_origin, dim=0) | |
else: | |
image_features, image_features_origin = self.encode_images(images) | |
image_features = image_features.to(self.device) | |
image_features_origin = image_features_origin.to(self.device) | |
batch_indices = [] | |
# TODO: image start / end is not implemented here to support pretraining. | |
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): | |
raise NotImplementedError | |
# Let's just add dummy tensors if they do not exist, | |
# it is a headache to deal with None all the time. | |
# But it is not ideal, and if you have a better idea, | |
# please open an issue / submit a PR, thanks. | |
_labels = labels | |
_position_ids = position_ids | |
_attention_mask = attention_mask | |
if attention_mask is None: | |
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) | |
else: | |
attention_mask = attention_mask.bool() | |
if position_ids is None: | |
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) | |
if labels is None: | |
labels = torch.full_like(input_ids, IGNORE_INDEX) | |
# remove the padding using attention_mask -- TODO: double check | |
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] | |
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] | |
new_input_embeds = [] | |
new_labels = [] | |
cur_image_idx = 0 | |
modal =[] | |
for batch_idx, cur_input_ids in enumerate(input_ids): | |
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() | |
num_learnables = (cur_input_ids == LEARNABLE_TOKEN_INDEX).sum() | |
num_specials = num_images + num_learnables | |
image_token_indices_origin = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() | |
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] | |
learnable_token_indices = torch.where(cur_input_ids == LEARNABLE_TOKEN_INDEX)[0].tolist() #[43] | |
all_special_indices = sorted(image_token_indices_origin+ learnable_token_indices) | |
image_token_len = image_features.shape[1] - 1 | |
learnable_token_len = learnable_tokens.shape[0] -1 | |
offset = 0 | |
new_indices= [] | |
for i, idx in enumerate(all_special_indices): | |
if idx in learnable_token_indices: | |
new_indices.append(idx + offset) | |
if idx in image_token_indices: | |
offset += image_token_len | |
if idx in learnable_token_indices: | |
offset += learnable_token_len | |
batch_indices.append(new_indices) | |
special_token_indices = sorted(image_token_indices + learnable_token_indices) | |
cur_input_ids_no_special = [] | |
cur_labels = labels[batch_idx] | |
cur_labels_no_special = [] | |
for i in range(len(special_token_indices) - 1): | |
cur_input_ids_no_special.append(cur_input_ids[special_token_indices[i]+1:special_token_indices[i+1]]) | |
cur_labels_no_special.append(cur_labels[special_token_indices[i]+1:special_token_indices[i+1]]) | |
split_sizes = [x.shape[0] for x in cur_labels_no_special] | |
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_no_special)) | |
cur_input_embeds_no_special = torch.split(cur_input_embeds, split_sizes, dim=0) | |
cur_new_input_embeds = [] | |
cur_new_labels = [] | |
for i in range(num_specials + 1): | |
cur_new_input_embeds.append(cur_input_embeds_no_special[i]) | |
cur_new_labels.append(cur_labels_no_special[i]) | |
if i < num_specials: | |
if special_token_indices[i+1] in image_token_indices: | |
cur_image_features = image_features[cur_image_idx] | |
cur_image_idx += 1 | |
cur_new_input_embeds.append(cur_image_features) | |
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) | |
elif special_token_indices[i+1] in learnable_token_indices: | |
cur_new_input_embeds.append(learnable_tokens) | |
cur_new_labels.append(torch.full((learnable_tokens.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) | |
else: | |
ValueError("token indices error") | |
cur_new_input_embeds = torch.cat(cur_new_input_embeds) | |
cur_new_labels = torch.cat(cur_new_labels) | |
if num_images == 0 : | |
cur_image_features = image_features[cur_image_idx] | |
cur_new_input_embeds = torch.cat([cur_new_input_embeds, cur_image_features[0:0]], dim=0) | |
cur_image_idx += 1 | |
modal.append(1) | |
else: | |
modal.append(2) | |
new_input_embeds.append(cur_new_input_embeds) | |
new_labels.append(cur_new_labels) | |
question_token_ranges = self.extract_question_token_indices(new_labels, batch_indices, image_token_len+1, modal) | |
# Combine them | |
max_len = max(x.shape[0] for x in new_input_embeds) | |
batch_size = len(new_input_embeds) | |
new_input_embeds_padded = [] | |
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) | |
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) | |
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) | |
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): | |
cur_len = cur_new_embed.shape[0] | |
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": | |
new_input_embeds_padded.append(torch.cat(( | |
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), | |
cur_new_embed | |
), dim=0)) | |
if cur_len > 0: | |
new_labels_padded[i, -cur_len:] = cur_new_labels | |
attention_mask[i, -cur_len:] = True | |
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) | |
else: | |
new_input_embeds_padded.append(torch.cat(( | |
cur_new_embed, | |
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) | |
), dim=0)) | |
if cur_len > 0: | |
new_labels_padded[i, :cur_len] = cur_new_labels | |
attention_mask[i, :cur_len] = True | |
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) | |
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) | |
if _labels is None: | |
new_labels = None | |
else: | |
new_labels = new_labels_padded | |
if _attention_mask is None: | |
attention_mask = None | |
else: | |
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) | |
if _position_ids is None: | |
position_ids = None | |
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels, batch_indices, image_features_origin, learnable_tokens.shape[0], modal, question_token_ranges | |
def initialize_vision_tokenizer(self, model_args, tokenizer): | |
if tokenizer.convert_tokens_to_ids(LEARNABLE_TOKEN) == tokenizer.unk_token_id: | |
tokenizer.add_tokens([LEARNABLE_TOKEN], special_tokens=True) | |
print(f"Added {LEARNABLE_TOKEN} to tokenizer.") | |
else: | |
print(f"{LEARNABLE_TOKEN} already exists in the tokenizer.") | |
token_id = tokenizer.convert_tokens_to_ids(LEARNABLE_TOKEN) | |
print(f"Token ID for {LEARNABLE_TOKEN}: {token_id}") | |
if model_args.mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if model_args.mm_use_im_start_end: | |
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = self.get_input_embeddings().weight.data | |
output_embeddings = self.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = True | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |
if model_args.pretrain_mm_mlp_adapter: | |
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') | |
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] | |
assert num_new_tokens == 2 | |
if input_embeddings.shape == embed_tokens_weight.shape: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] | |
elif embed_tokens_weight.shape[0] == num_new_tokens: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight | |
else: | |
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") | |
elif model_args.mm_use_im_patch_token: | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = False | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |