#origin # Copyright 2024 Zhenwei Shao and MILVLG team. # Licensed under the Apache License, Version 2.0. # Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright: # Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod import torch import torch.nn as nn from .multimodal_encoder.builder import build_vision_tower from .multimodal_projector.builder import build_vision_projector from flashsloth.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, LEARNABLE_TOKEN, LEARNABLE_TOKEN_INDEX from flashsloth.model.pooling import build_pooling class LlavaMetaModel: def __init__(self, config): super(LlavaMetaModel, self).__init__(config) if hasattr(config, "mm_vision_tower"): self.vision_tower = build_vision_tower(config, delay_load=False) self.mm_projector = build_vision_projector(config) self.pooling = build_pooling('attention', input_dim=1152, pooling_size=3, device=self.vision_tower.device, dtype=self.vision_tower.dtype) # self.pooling = build_pooling('average', pooling_size=3, device=self.vision_tower.device) # hack # [Edited by zhenwei - 2024-02-02 20:36] is_meta = getattr(nn.Linear(1, 1, bias=False).weight, 'is_meta', False) if is_meta: fake_dict = {} for n, p in self.mm_projector.named_parameters(): fake_dict[n] = torch.zeros_like(p, device='cpu') from transformers.modeling_utils import _load_state_dict_into_meta_model _load_state_dict_into_meta_model( self.mm_projector, fake_dict, fake_dict.keys(), # left for now but could be removed, see below '', fake_dict.keys(), ) # self.mm_projector.to('cuda' if torch.cuda.is_available() else 'cpu') def get_vision_tower(self): vision_tower = getattr(self, 'vision_tower', None) if type(vision_tower) is list: vision_tower = vision_tower[0] return vision_tower def initialize_vision_modules(self, model_args, fsdp=None): vision_tower = model_args.vision_tower mm_vision_select_layer = model_args.mm_vision_select_layer mm_vision_select_feature = model_args.mm_vision_select_feature pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter self.config.mm_vision_tower = vision_tower if self.get_vision_tower() is None: vision_tower = build_vision_tower(model_args) if fsdp is not None and len(fsdp) > 0: self.vision_tower = [vision_tower] else: self.vision_tower = vision_tower else: if fsdp is not None and len(fsdp) > 0: vision_tower = self.vision_tower[0] else: vision_tower = self.vision_tower vision_tower.load_model() self.config.use_mm_proj = True self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') self.config.mm_hidden_size = vision_tower.hidden_size self.config.mm_vision_select_layer = mm_vision_select_layer self.config.mm_vision_select_feature = mm_vision_select_feature if getattr(self, 'mm_projector', None) is None: self.mm_projector = build_vision_projector(self.config) else: # In case it is frozen by LoRA for p in self.mm_projector.parameters(): p.requires_grad = True if pretrain_mm_mlp_adapter is not None: mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') def get_w(weights, keyword): return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) self.pooling = build_pooling('attention', input_dim=1152, pooling_size=3, device=self.vision_tower.device, dtype=self.vision_tower.dtype) # self.pooling = build_pooling('average', pooling_size=3, device=self.vision_tower.device) class LlavaMetaForCausalLM(ABC): @abstractmethod def get_model(self): pass def get_vision_tower(self): return self.get_model().get_vision_tower() def encode_images(self, images): image_features = self.get_model().get_vision_tower()(images) image_features_origin = image_features image_features = self.get_model().pooling(image_features) image_features = self.get_model().mm_projector(image_features) return image_features, image_features_origin def extract_question_token_indices(self, labels, batch_indices, image_token_len, modal, version="phi2"): """ extract indices of all question tokens in the input sequence. """ if len(batch_indices) < 20: version = "phi2" else: version = "plain" if version == "plain": question_token_ranges = [] for idx, (cur_labels, cur_batch_indices, num ) in enumerate(zip(labels, batch_indices, modal)): question_token_ranges.append([(image_token_len + 1, batch_indices[idx][0])]) else: question_token_ranges = [] for _, (cur_labels, cur_batch_indices, num ) in enumerate(zip(labels, batch_indices, modal)): cur_question_ranges = [] #first question token is after the image token and before the first learnable token if num == 1:#single modal first_question_start = 32 elif num==2: #multi modal first_question_start = 32 + image_token_len + 1 if len(cur_batch_indices) == 0: print("cur_batch_indices", cur_batch_indices) first_question_end = first_question_start else: first_question_end = cur_batch_indices[0] if first_question_end < first_question_start: print("first_question_start", first_question_start) print("first_question_end", first_question_end) print(batch_indices) # assert first_question_end >= first_question_start cur_question_ranges.append((first_question_start, first_question_end)) #subsequent question tokens are after the answer token and before the next learnable token learnable_idx_counter = 1 for i in range(len(cur_labels) - 1): if cur_labels[i] != IGNORE_INDEX and cur_labels[i + 1] == IGNORE_INDEX: question_start = i + 3 try: question_end = cur_batch_indices[learnable_idx_counter] except IndexError: print(f"learnable_idx_counter {learnable_idx_counter} exceeds cur_batch_indices length {len(cur_batch_indices)}") break learnable_idx_counter += 1 cur_question_ranges.append((question_start, question_end)) if len(cur_question_ranges) > len(cur_batch_indices): cur_question_ranges = cur_question_ranges[:len(cur_batch_indices)] elif len(cur_question_ranges) < len(cur_batch_indices): last_range = cur_question_ranges[-1] if cur_question_ranges else (0, 0) while len(cur_question_ranges) < len(cur_batch_indices): cur_question_ranges.append(last_range) question_token_ranges.append(cur_question_ranges) return question_token_ranges def prepare_inputs_labels_for_multimodal( self, input_ids, position_ids, attention_mask, past_key_values, labels, images, learnable_tokens, model_version='phi2' ): dot_tokens = self.get_model().embed_tokens(torch.full((learnable_tokens.size(0),), 764, device=input_ids.device, dtype=input_ids.dtype)) learnable_tokens = learnable_tokens + dot_tokens modal = [2] vision_tower = self.get_vision_tower() if model_version == 'phi2': if past_key_values is not None: target_shape = past_key_values[0][0].shape[2] + 1 attention_mask = torch.ones( (attention_mask.shape[0], target_shape), dtype=attention_mask.dtype, device=attention_mask.device ) position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 return input_ids[:, -1:], position_ids, attention_mask, past_key_values, None, labels, [], None, learnable_tokens.shape[0], modal, None if vision_tower is None or images is None or input_ids.shape[1] == 1: return input_ids, None, None, past_key_values, None, None, [], None, learnable_tokens.shape[0], modal, None else: if vision_tower is None or images is None or input_ids.shape[1] == 1: if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: target_shape = past_key_values.seqlen_offset + 1 attention_mask = torch.cat((attention_mask, torch.ones( (attention_mask.shape[0], target_shape - attention_mask.shape[1]), dtype=attention_mask.dtype, device=attention_mask.device )), dim=1) position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 return input_ids, position_ids, attention_mask, past_key_values, None, labels, [], None, learnable_tokens.shape[0], modal if type(images) is list or images.ndim == 5: concat_images = torch.cat([image for image in images], dim=0) image_features, image_features_origin = self.encode_images(concat_images) split_sizes = [image.shape[0] for image in images] image_features = torch.split(image_features, split_sizes, dim=0) image_features_origin = torch.split(image_features_origin, split_sizes, dim=0) image_features = [x.flatten(0, 1).to(self.device) for x in image_features] image_features_origin = [x.flatten(0, 1).to(self.device) for x in image_features_origin] image_features = torch.stack(image_features, dim=0) image_features_origin = torch.stack(image_features_origin, dim=0) else: image_features, image_features_origin = self.encode_images(images) image_features = image_features.to(self.device) image_features_origin = image_features_origin.to(self.device) batch_indices = [] # TODO: image start / end is not implemented here to support pretraining. if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): raise NotImplementedError # Let's just add dummy tensors if they do not exist, # it is a headache to deal with None all the time. # But it is not ideal, and if you have a better idea, # please open an issue / submit a PR, thanks. _labels = labels _position_ids = position_ids _attention_mask = attention_mask if attention_mask is None: attention_mask = torch.ones_like(input_ids, dtype=torch.bool) else: attention_mask = attention_mask.bool() if position_ids is None: position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) if labels is None: labels = torch.full_like(input_ids, IGNORE_INDEX) # remove the padding using attention_mask -- TODO: double check input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] new_input_embeds = [] new_labels = [] cur_image_idx = 0 modal =[] for batch_idx, cur_input_ids in enumerate(input_ids): num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() num_learnables = (cur_input_ids == LEARNABLE_TOKEN_INDEX).sum() num_specials = num_images + num_learnables image_token_indices_origin = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] learnable_token_indices = torch.where(cur_input_ids == LEARNABLE_TOKEN_INDEX)[0].tolist() #[43] all_special_indices = sorted(image_token_indices_origin+ learnable_token_indices) image_token_len = image_features.shape[1] - 1 learnable_token_len = learnable_tokens.shape[0] -1 offset = 0 new_indices= [] for i, idx in enumerate(all_special_indices): if idx in learnable_token_indices: new_indices.append(idx + offset) if idx in image_token_indices: offset += image_token_len if idx in learnable_token_indices: offset += learnable_token_len batch_indices.append(new_indices) special_token_indices = sorted(image_token_indices + learnable_token_indices) cur_input_ids_no_special = [] cur_labels = labels[batch_idx] cur_labels_no_special = [] for i in range(len(special_token_indices) - 1): cur_input_ids_no_special.append(cur_input_ids[special_token_indices[i]+1:special_token_indices[i+1]]) cur_labels_no_special.append(cur_labels[special_token_indices[i]+1:special_token_indices[i+1]]) split_sizes = [x.shape[0] for x in cur_labels_no_special] cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_no_special)) cur_input_embeds_no_special = torch.split(cur_input_embeds, split_sizes, dim=0) cur_new_input_embeds = [] cur_new_labels = [] for i in range(num_specials + 1): cur_new_input_embeds.append(cur_input_embeds_no_special[i]) cur_new_labels.append(cur_labels_no_special[i]) if i < num_specials: if special_token_indices[i+1] in image_token_indices: cur_image_features = image_features[cur_image_idx] cur_image_idx += 1 cur_new_input_embeds.append(cur_image_features) cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) elif special_token_indices[i+1] in learnable_token_indices: cur_new_input_embeds.append(learnable_tokens) cur_new_labels.append(torch.full((learnable_tokens.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) else: ValueError("token indices error") cur_new_input_embeds = torch.cat(cur_new_input_embeds) cur_new_labels = torch.cat(cur_new_labels) if num_images == 0 : cur_image_features = image_features[cur_image_idx] cur_new_input_embeds = torch.cat([cur_new_input_embeds, cur_image_features[0:0]], dim=0) cur_image_idx += 1 modal.append(1) else: modal.append(2) new_input_embeds.append(cur_new_input_embeds) new_labels.append(cur_new_labels) question_token_ranges = self.extract_question_token_indices(new_labels, batch_indices, image_token_len+1, modal) # Combine them max_len = max(x.shape[0] for x in new_input_embeds) batch_size = len(new_input_embeds) new_input_embeds_padded = [] new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): cur_len = cur_new_embed.shape[0] if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": new_input_embeds_padded.append(torch.cat(( torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed ), dim=0)) if cur_len > 0: new_labels_padded[i, -cur_len:] = cur_new_labels attention_mask[i, -cur_len:] = True position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) else: new_input_embeds_padded.append(torch.cat(( cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) ), dim=0)) if cur_len > 0: new_labels_padded[i, :cur_len] = cur_new_labels attention_mask[i, :cur_len] = True position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) if _labels is None: new_labels = None else: new_labels = new_labels_padded if _attention_mask is None: attention_mask = None else: attention_mask = attention_mask.to(dtype=_attention_mask.dtype) if _position_ids is None: position_ids = None return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels, batch_indices, image_features_origin, learnable_tokens.shape[0], modal, question_token_ranges def initialize_vision_tokenizer(self, model_args, tokenizer): if tokenizer.convert_tokens_to_ids(LEARNABLE_TOKEN) == tokenizer.unk_token_id: tokenizer.add_tokens([LEARNABLE_TOKEN], special_tokens=True) print(f"Added {LEARNABLE_TOKEN} to tokenizer.") else: print(f"{LEARNABLE_TOKEN} already exists in the tokenizer.") token_id = tokenizer.convert_tokens_to_ids(LEARNABLE_TOKEN) print(f"Token ID for {LEARNABLE_TOKEN}: {token_id}") if model_args.mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if model_args.mm_use_im_start_end: num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = self.get_input_embeddings().weight.data output_embeddings = self.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = True for p in self.get_output_embeddings().parameters(): p.requires_grad = False if model_args.pretrain_mm_mlp_adapter: mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] assert num_new_tokens == 2 if input_embeddings.shape == embed_tokens_weight.shape: input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] elif embed_tokens_weight.shape[0] == num_new_tokens: input_embeddings[-num_new_tokens:] = embed_tokens_weight else: raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") elif model_args.mm_use_im_patch_token: if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = False for p in self.get_output_embeddings().parameters(): p.requires_grad = False