# Copyright 2024 Zhenwei Shao and MILVLG team. # Licensed under the Apache License, Version 2.0. # Adopted from https://github.com/haotian-liu/LLaVA. import torch import torch.nn as nn from typing import Dict, Optional, Union import numpy as np from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig from .siglip.image_processing_flashsloth import ImpImageProcessor from .siglip.modeling_siglip import SiglipVisionModel from .siglip.configuration_siglip import SiglipVisionConfig class CLIPVisionTower(nn.Module): def __init__(self, vision_tower, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') if not delay_load: self.load_model() else: self.cfg_only = SiglipVisionConfig.from_pretrained(self.vision_tower_name) def load_model(self): if self.is_loaded: return # It's a hacky way to check if model is initialized under meta device # context, which will be enabled when loading trained model by huggingface # `from_pretrained` api. In the case that a full model with vision tower is # loaded, there will be a warning if vision tower is loaded to cpu here. So we # set `device_map` to `auto` in order to avoid the warning. # [Edited by zhenwei - 2024-02-02 13:03] is_meta = getattr(nn.Linear(1, 1, bias=False).weight, 'is_meta', False) if 'siglip' in self.vision_tower_name: # "google/siglip-so400m-patch14-384" self.image_processor = ImpImageProcessor() if is_meta: # cfg = SiglipVisionConfig.from_pretrained(self.vision_tower_name) # self.vision_tower = SiglipVisionModel(cfg) self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name, device_map='auto') else: self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name) del self.vision_tower.vision_model.encoder.layers[(self.select_layer + 1):] self.vision_tower.vision_model.post_layernorm = nn.Identity() self.vision_tower.vision_model.head = nn.Identity() else: self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) if is_meta: # cfg = CLIPVisionConfig.from_pretrained(self.vision_tower_name) # self.vision_tower = CLIPVisionModel(cfg) self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map='auto') else: self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) del self.vision_tower.vision_model.encoder.layers[(self.select_layer + 1):] self.vision_tower.requires_grad_(False) self.vision_tower.eval() self.is_loaded = True def feature_select(self, image_forward_outs): # image_features = image_forward_outs.hidden_states[self.select_layer] image_features = image_forward_outs.hidden_states[-1] if self.select_feature == 'patch': image_features = image_features[:, -self.num_patches:] assert image_features.shape[-2] == self.num_patches, f'select_feature=patch, image_features.shape[-2]={image_features.shape[-2]} != num_patches={self.num_patches}' elif self.select_feature == 'cls_patch': image_features = image_features assert image_features.shape[-2] == self.num_patches + 1, f'select_feature=cls_patch, image_features.shape[-2]={image_features.shape[-2]} != num_patches+1={self.num_patches+1}' else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features @torch.no_grad() def forward(self, images): # assert self.num_patches == 729 if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) # image_feature = image_forward_out.last_hidden_state.to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) # image_features = image_forward_outs.last_hidden_state.to(images.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): for p in self.vision_tower.parameters(): return p.dtype @property def device(self): for p in self.vision_tower.parameters(): return p.device @property def is_meta(self): return self.device.type == 'meta' @property def config(self): if self.is_loaded: return self.vision_tower.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2