Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,438 Bytes
841bef5 0afd727 841bef5 0afd727 841bef5 312b679 0afd727 841bef5 333ea05 841bef5 0afd727 841bef5 312b679 841bef5 b70aad2 841bef5 b70aad2 841bef5 b70aad2 841bef5 b70aad2 841bef5 b70aad2 841bef5 b70aad2 841bef5 b70aad2 841bef5 b70aad2 a1cdc55 b70aad2 333ea05 841bef5 79d5e07 758eccd 841bef5 f39b1b0 841bef5 79d5e07 841bef5 79d5e07 333ea05 841bef5 79d5e07 a1cdc55 0afd727 b70aad2 79d5e07 3d2b840 79d5e07 a1cdc55 841bef5 b70aad2 79d5e07 aa84990 79d5e07 aa84990 79d5e07 b70aad2 333ea05 aa84990 79d5e07 aa84990 79d5e07 b70aad2 333ea05 841bef5 a1cdc55 333ea05 79d5e07 3d2b840 841bef5 79d5e07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import os
import argparse
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as T
from transformers import AutoTokenizer
import gradio as gr
from resnet50 import build_model
from utils import generate_similiarity_map, post_process, load_tokenizer, build_transform_R50
from utils import IMAGENET_MEAN, IMAGENET_STD
from internvl.train.dataset import dynamic_preprocess
from internvl.model.internvl_chat import InternVLChatModel
import spaces
# 模型配置
CHECKPOINTS = {
"TokenFD_4096_English_seg": "TongkunGuan/TokenFD_4096_English_seg",
"TokenFD_2048_Bilingual_seg": "TongkunGuan/TokenFD_2048_Bilingual_seg",
}
# 全局变量
HF_TOKEN = os.getenv("HF_TOKEN")
def load_model(check_type):
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("cuda")
if check_type == 'R50':
tokenizer = load_tokenizer('tokenizer_path')
model = build_model(argparse.Namespace()).eval()
model.load_state_dict(torch.load(CHECKPOINTS['R50'], map_location='cpu')['model'])
transform = build_transform_R50(normalize_type='imagenet')
elif check_type == 'R50_siglip':
tokenizer = load_tokenizer('tokenizer_path')
model = build_model(argparse.Namespace()).eval()
model.load_state_dict(torch.load(CHECKPOINTS['R50_siglip'], map_location='cpu')['model'])
transform = build_transform_R50(normalize_type='imagenet')
elif 'TokenFD' in check_type:
model_path = CHECKPOINTS[check_type]
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False, use_auth_token=HF_TOKEN)
model = InternVLChatModel.from_pretrained(model_path, torch_dtype=torch.bfloat16).eval()
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB')),
T.Resize((224, 224)),
T.ToTensor(),
T.Normalize(IMAGENET_MEAN, IMAGENET_STD)
])
return model.to(device), tokenizer, transform, device
def process_image(model, tokenizer, transform, device, check_type, image, text, state):
src_size = image.size
if 'TokenOCR' in check_type:
images, target_ratio = dynamic_preprocess(image, min_num=1, max_num=12,
image_size=model.config.force_image_size,
use_thumbnail=model.config.use_thumbnail,
return_ratio=True)
pixel_values = torch.stack([transform(img) for img in images]).to(device)
else:
pixel_values = torch.stack([transform(image)]).to(device)
target_ratio = (1, 1)
# 文本处理
text += ' '
input_ids = tokenizer(text)['input_ids'][1:]
input_ids = torch.tensor(input_ids, device=device)
# 获取嵌入
with torch.no_grad():
if 'R50' in check_type:
text_embeds = model.language_embedding(input_ids)
else:
text_embeds = model.tok_embeddings(input_ids)
vit_embeds, size1 = model.forward_tokenocr(pixel_values.to(torch.bfloat16).to(device))
vit_embeds, size2 = post_process(vit_embeds, target_ratio, check_type)
# 计算相似度
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
vit_embeds = vit_embeds / vit_embeds.norm(dim=-1, keepdim=True)
similarity = text_embeds @ vit_embeds.T
resized_size = size1 if size1 is not None else size2
attn_map = similarity.reshape(len(text_embeds), resized_size[0], resized_size[1])
all_bpe_strings = [tokenizer.decode(input_id) for input_id in input_ids]
vis = generate_similiarity_map([image], attn_map,
[tokenizer.decode([i]) for i in input_ids],
[], target_ratio, src_size)
bpe = [tokenizer.decode([i]) for i in input_ids]
bpe[-1] = text
# Store results in state
state['current_vis'] = vis
state['current_bpe'] = bpe
return image, vis[0], bpe[0], len(vis) - 1
# Gradio界面
with gr.Blocks() as demo:
gr.Markdown("## BPE Visualization Demo - TokenFD基座模型能力可视化")
with gr.Row():
with gr.Column(scale=0.5):
model_type = gr.Dropdown(
choices=["TokenFD_4096_English_seg", "TokenFD_2048_Bilingual_seg", "R50", "R50_siglip"],
label="Select model type",
value="TokenOCR_4096_English_seg"
)
image_input = gr.Image(label="Upload images", type="pil")
text_input = gr.Textbox(label="Input text")
run_btn = gr.Button("RUN")
gr.Examples(
examples=[
[os.path.join("examples", "examples0.jpg"), "Veterans and Benefits"],
[os.path.join("examples", "examples1.jpg"), "Refreshers"],
[os.path.join("examples", "examples2.png"), "Vision Transformer"]
],
inputs=[image_input, text_input],
label="Sample input"
)
with gr.Column(scale=2):
gr.Markdown("<p style='font-size:20px;'><span style='color:red;'>If the input text is not included in the image</span>, the attention map will show a lot of noise (the actual response value is very low), since we normalize the attention map according to the relative value.</p>")
orig_img = gr.Image(label="Original picture", interactive=False)
heatmap = gr.Image(label="BPE visualization", interactive=False)
prev_btn = gr.Button("⬅ Last", visible=False)
index_slider = gr.Slider(0, 1, value=0, step=1, label="BPE index", visible=False)
next_btn = gr.Button("⮕ Next", visible=False)
bpe_display = gr.Markdown("Current BPE: ", visible=False)
state = gr.State()
state['current_vis'] = []
state['current_bpe'] = []
state['current_index'] = 0
@spaces.GPU
def on_run_clicked(model_type, image, text, state):
image, vis, bpe, slider_max_val = process_image(*load_model(model_type), model_type, image, text, state)
state['current_vis'] = vis
state['current_bpe'] = bpe
state['current_index'] = 0
bpe_text = format_bpe_display(bpe)
return image, vis, bpe_text, slider_max_val
run_btn.click(
on_run_clicked,
inputs=[model_type, image_input, text_input, state],
outputs=[orig_img, heatmap, bpe_display],
_js="""
(orig_img, heatmap, bpe_display, slider_max_val) => {
index_slider.update({ visible: true, maximum: slider_max_val, value: 0 });
prev_btn.update({ visible: true });
next_btn.update({ visible: true });
return [orig_img, heatmap, bpe_display];
}
"""
)
prev_btn.click(
lambda state: update_index(-1, state),
inputs=[state],
outputs=[heatmap, bpe_display, index_slider]
)
next_btn.click(
lambda state: update_index(1, state),
inputs=[state],
outputs=[heatmap, bpe_display, index_slider]
)
index_slider.change(
lambda x, state: update_slider_index(x, state),
inputs=[index_slider, state],
outputs=[heatmap, bpe_display]
)
if __name__ == "__main__":
demo.launch() |