File size: 7,438 Bytes
841bef5
 
 
 
 
 
 
 
 
 
 
 
 
0afd727
841bef5
 
 
0afd727
 
841bef5
 
 
312b679
0afd727
841bef5
333ea05
 
841bef5
 
 
 
 
 
 
 
 
 
 
 
0afd727
841bef5
312b679
841bef5
 
 
 
 
 
 
 
 
 
b70aad2
841bef5
 
 
 
 
 
b70aad2
841bef5
b70aad2
841bef5
 
b70aad2
841bef5
b70aad2
 
 
 
841bef5
 
 
 
 
b70aad2
 
841bef5
b70aad2
 
841bef5
 
 
 
 
 
b70aad2
 
 
 
 
 
 
a1cdc55
b70aad2
 
 
 
333ea05
841bef5
79d5e07
758eccd
841bef5
 
 
 
f39b1b0
841bef5
79d5e07
841bef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79d5e07
 
 
 
 
333ea05
841bef5
79d5e07
 
 
 
a1cdc55
0afd727
b70aad2
 
79d5e07
 
 
3d2b840
79d5e07
a1cdc55
841bef5
 
b70aad2
 
79d5e07
 
 
 
 
 
 
 
aa84990
79d5e07
aa84990
79d5e07
b70aad2
333ea05
aa84990
79d5e07
aa84990
79d5e07
b70aad2
333ea05
841bef5
a1cdc55
333ea05
79d5e07
 
 
 
3d2b840
841bef5
79d5e07
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import argparse
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as T
from transformers import AutoTokenizer
import gradio as gr
from resnet50 import build_model
from utils import generate_similiarity_map, post_process, load_tokenizer, build_transform_R50
from utils import IMAGENET_MEAN, IMAGENET_STD
from internvl.train.dataset import dynamic_preprocess
from internvl.model.internvl_chat import InternVLChatModel
import spaces

# 模型配置
CHECKPOINTS = {
    "TokenFD_4096_English_seg": "TongkunGuan/TokenFD_4096_English_seg",
    "TokenFD_2048_Bilingual_seg": "TongkunGuan/TokenFD_2048_Bilingual_seg",
}

# 全局变量
HF_TOKEN = os.getenv("HF_TOKEN")

def load_model(check_type):
    # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    device = torch.device("cuda")
    if check_type == 'R50':
        tokenizer = load_tokenizer('tokenizer_path')
        model = build_model(argparse.Namespace()).eval()
        model.load_state_dict(torch.load(CHECKPOINTS['R50'], map_location='cpu')['model'])
        transform = build_transform_R50(normalize_type='imagenet')

    elif check_type == 'R50_siglip':
        tokenizer = load_tokenizer('tokenizer_path')
        model = build_model(argparse.Namespace()).eval()
        model.load_state_dict(torch.load(CHECKPOINTS['R50_siglip'], map_location='cpu')['model'])
        transform = build_transform_R50(normalize_type='imagenet')

    elif 'TokenFD' in check_type:
        model_path = CHECKPOINTS[check_type]
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False, use_auth_token=HF_TOKEN)
        model = InternVLChatModel.from_pretrained(model_path, torch_dtype=torch.bfloat16).eval()
        transform = T.Compose([
            T.Lambda(lambda img: img.convert('RGB')),
            T.Resize((224, 224)),
            T.ToTensor(),
            T.Normalize(IMAGENET_MEAN, IMAGENET_STD)
        ])
    
    return model.to(device), tokenizer, transform, device

def process_image(model, tokenizer, transform, device, check_type, image, text, state):
    src_size = image.size
    if 'TokenOCR' in check_type:
        images, target_ratio = dynamic_preprocess(image, min_num=1, max_num=12, 
                                                  image_size=model.config.force_image_size,
                                                  use_thumbnail=model.config.use_thumbnail,
                                                  return_ratio=True)
        pixel_values = torch.stack([transform(img) for img in images]).to(device)
    else:
        pixel_values = torch.stack([transform(image)]).to(device)
        target_ratio = (1, 1)

    # 文本处理
    text += ' '
    input_ids = tokenizer(text)['input_ids'][1:]
    input_ids = torch.tensor(input_ids, device=device)
    
    # 获取嵌入
    with torch.no_grad():
        if 'R50' in check_type:
            text_embeds = model.language_embedding(input_ids)
        else:
            text_embeds = model.tok_embeddings(input_ids)
        
        vit_embeds, size1 = model.forward_tokenocr(pixel_values.to(torch.bfloat16).to(device))
        vit_embeds, size2 = post_process(vit_embeds, target_ratio, check_type)
        
        # 计算相似度
        text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
        vit_embeds = vit_embeds / vit_embeds.norm(dim=-1, keepdim=True)
        similarity = text_embeds @ vit_embeds.T
        resized_size = size1 if size1 is not None else size2

    attn_map = similarity.reshape(len(text_embeds), resized_size[0], resized_size[1])
    all_bpe_strings = [tokenizer.decode(input_id) for input_id in input_ids]
    vis = generate_similiarity_map([image], attn_map, 
                                   [tokenizer.decode([i]) for i in input_ids], 
                                   [], target_ratio, src_size)
    
    bpe = [tokenizer.decode([i]) for i in input_ids]
    bpe[-1] = text

    # Store results in state
    state['current_vis'] = vis
    state['current_bpe'] = bpe
    return image, vis[0], bpe[0], len(vis) - 1

# Gradio界面
with gr.Blocks() as demo:
    gr.Markdown("## BPE Visualization Demo - TokenFD基座模型能力可视化")
    
    with gr.Row():
        with gr.Column(scale=0.5):
            model_type = gr.Dropdown(
                choices=["TokenFD_4096_English_seg", "TokenFD_2048_Bilingual_seg", "R50", "R50_siglip"],
                label="Select model type",
                value="TokenOCR_4096_English_seg"
            )
            image_input = gr.Image(label="Upload images", type="pil")
            text_input = gr.Textbox(label="Input text")
            run_btn = gr.Button("RUN")
            gr.Examples(
                examples=[
                    [os.path.join("examples", "examples0.jpg"), "Veterans and Benefits"],
                    [os.path.join("examples", "examples1.jpg"), "Refreshers"],
                    [os.path.join("examples", "examples2.png"), "Vision Transformer"]
                ],
                inputs=[image_input, text_input],
                label="Sample input"
            )
        
        with gr.Column(scale=2):
            gr.Markdown("<p style='font-size:20px;'><span style='color:red;'>If the input text is not included in the image</span>, the attention map will show a lot of noise (the actual response value is very low), since we normalize the attention map according to the relative value.</p>")
            orig_img = gr.Image(label="Original picture", interactive=False)
            heatmap = gr.Image(label="BPE visualization", interactive=False)
            prev_btn = gr.Button("⬅ Last", visible=False)
            index_slider = gr.Slider(0, 1, value=0, step=1, label="BPE index", visible=False)
            next_btn = gr.Button("⮕ Next", visible=False)
            bpe_display = gr.Markdown("Current BPE: ", visible=False)

    state = gr.State()
    state['current_vis'] = []
    state['current_bpe'] = []
    state['current_index'] = 0

    @spaces.GPU
    def on_run_clicked(model_type, image, text, state):
        image, vis, bpe, slider_max_val = process_image(*load_model(model_type), model_type, image, text, state)
        state['current_vis'] = vis
        state['current_bpe'] = bpe
        state['current_index'] = 0
        bpe_text = format_bpe_display(bpe)
        return image, vis, bpe_text, slider_max_val

    run_btn.click(
        on_run_clicked,
        inputs=[model_type, image_input, text_input, state],
        outputs=[orig_img, heatmap, bpe_display],
        _js="""
            (orig_img, heatmap, bpe_display, slider_max_val) => {
                index_slider.update({ visible: true, maximum: slider_max_val, value: 0 });
                prev_btn.update({ visible: true });
                next_btn.update({ visible: true });
                return [orig_img, heatmap, bpe_display];
            }
        """
    )

    prev_btn.click(
        lambda state: update_index(-1, state),
        inputs=[state],
        outputs=[heatmap, bpe_display, index_slider]
    )

    next_btn.click(
        lambda state: update_index(1, state),
        inputs=[state],
        outputs=[heatmap, bpe_display, index_slider]
    )

    index_slider.change(
        lambda x, state: update_slider_index(x, state),
        inputs=[index_slider, state],
        outputs=[heatmap, bpe_display]
    )

if __name__ == "__main__":
    demo.launch()