File size: 8,460 Bytes
841bef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import argparse
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as T
from transformers import AutoTokenizer
import gradio as gr
from resnet50 import build_model
from utils import generate_similiarity_map, post_process, load_tokenizer, build_transform_R50
from utils import IMAGENET_MEAN, IMAGENET_STD
from internvl.train.dataset import dynamic_preprocess
from internvl.model.internvl_chat import InternVLChatModel

# 模型配置
CHECKPOINTS = {
    "TokenOCR-4096-English-seg": "/path/to/TokenOCR_4096_English_seg",
    "TokenOCR-2048-Bilingual-seg": "/path/to/TokenOCR_2048_Binlinual_seg",
    "R50":"model/checkpoint.pth",
    "R50_siglip": "/path/to/R50_siglip_checkpoint.pth"
}

# 全局变量
current_vis = []
current_bpe = []
current_index = 0

def load_model(check_type):
    device = torch.device("cpu")
    
    if check_type == 'R50':
        tokenizer = load_tokenizer('tokenizer_path')
        model = build_model(argparse.Namespace()).eval()
        model.load_state_dict(torch.load(CHECKPOINTS['R50'], map_location='cpu')['model'])
        transform = build_transform_R50(normalize_type='imagenet')

    elif check_type == 'R50_siglip':
        tokenizer = load_tokenizer('tokenizer_path')
        model = build_model(argparse.Namespace()).eval()
        model.load_state_dict(torch.load(CHECKPOINTS['R50_siglip'], map_location='cpu')['model'])
        transform = build_transform_R50(normalize_type='imagenet')

    elif 'TokenOCR' in check_type:
        model_path = CHECKPOINTS[check_type]
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
        model = InternVLChatModel.from_pretrained(model_path, torch_dtype=torch.bfloat16).eval()
        transform = T.Compose([
            T.Lambda(lambda img: img.convert('RGB')),
            T.Resize((224, 224)),
            T.ToTensor(),
            T.Normalize(IMAGENET_MEAN, IMAGENET_STD)
        ])
    
    return model.to(device), tokenizer, transform, device

def process_image(model, tokenizer, transform, device, check_type, image, text):
    global current_vis, current_bpe
    src_size = image.size
    if 'TokenOCR' in check_type:
        images, target_ratio = dynamic_preprocess(image, min_num=1, max_num=12, 
                                                  image_size=model.config.force_image_size,
                                                  use_thumbnail=model.config.use_thumbnail,
                                                  return_ratio=True)
        pixel_values = torch.stack([transform(img) for img in images]).to(device)
    else:
        pixel_values = torch.stack([transform(image)]).to(device)
        target_ratio = (1, 1)

    # 文本处理
    text += ' '
    input_ids = tokenizer(text)['input_ids'][1:]
    input_ids = torch.tensor(input_ids, device=device)
    
    # 获取嵌入
    with torch.no_grad():
        if 'R50' in check_type:
            text_embeds = model.language_embedding(input_ids)
        else:
            text_embeds = model.tok_embeddings(input_ids)
        
        vit_embeds, size1 = model.forward_tokenocr(pixel_values.to(device))
        vit_embeds, size2 = post_process(vit_embeds, target_ratio, check_type)
        
        # 计算相似度
        text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
        vit_embeds = vit_embeds / vit_embeds.norm(dim=-1, keepdim=True)
        similarity = text_embeds @ vit_embeds.T
        resized_size = size1 if size1 is not None else size2

    # print(f"text_embeds shape: {text_embeds.shape}, numel: {text_embeds.numel()}") # text_embeds shape: torch.Size([4, 2048]), numel: 8192
    # print(f"vit_embeds shape: {vit_embeds.shape}, numel: {vit_embeds.numel()}") # vit_embeds shape: torch.Size([9728, 2048]), numel: 19922944
    # print(f"similarity shape: {similarity.shape}, numel: {similarity.numel()}")# similarity shape: torch.Size([4, 9728]), numel: 38912


    # 生成可视化
    attn_map = similarity.reshape(len(text_embeds), resized_size[0], resized_size[1])
    # attn_map = similarity.reshape(len(text_embeds), *target_ratio)
    all_bpe_strings = [tokenizer.decode(input_id) for input_id in input_ids]
    current_vis = generate_similiarity_map([image], attn_map, 
                                           [tokenizer.decode([i]) for i in input_ids], 
                                           [], target_ratio, src_size)
    
    current_bpe = [tokenizer.decode([i]) for i in input_ids]
    # current_bpe[-1] = 'Input text'
    current_bpe[-1] = text
    return image, current_vis[0], current_bpe[0]

# 事件处理函数
def update_index(change):
    global current_index
    current_index = max(0, min(len(current_vis) - 1, current_index + change))
    return current_vis[current_index], format_bpe_display(current_bpe[current_index])

def format_bpe_display(bpe):
    # 使用HTML标签来设置字体大小、颜色,加粗,并居中
    return f"<div style='text-align:center; font-size:20px;'><strong>Current BPE: <span style='color:red;'>{bpe}</span></strong></div>"

# Gradio界面
with gr.Blocks(title="BPE Visualization Demo") as demo:
    gr.Markdown("## BPE Visualization Demo - TokenOCR基座模型能力可视化")
    
    with gr.Row():
        with gr.Column(scale=0.5):
            model_type = gr.Dropdown(
                choices=["TokenOCR-4096-English-seg", "TokenOCR-2048-Bilingual-seg", "R50", "R50_siglip"],
                label="Select model type",
                value="R50"  # 设置默认值为第一个选项
            )
            image_input = gr.Image(label="Upload images", type="pil")
            text_input = gr.Textbox(label="Input text")

            run_btn = gr.Button("RUN")
            
            gr.Examples(
                examples=[
                    [os.path.join("examples", "examples0.jpg"), "Veterans and Benefits"],
                    [os.path.join("examples", "examples1.jpg"), "Refreshers"],
                    [os.path.join("examples", "examples2.png"), "Vision Transformer"]
                ],
                inputs=[image_input, text_input],
                label="Sample input"
            )
        
        with gr.Column(scale=2):
            gr.Markdown("<p style='font-size:20px;'><span style='color:red;'>If the input text is not included in the image</span>, the attention map will show a lot of noise (the actual response value is very low), since we normalize the attention map according to the relative value.</p>")

            with gr.Row():
                orig_img = gr.Image(label="Original picture", interactive=False)
                heatmap = gr.Image(label="BPE visualization", interactive=False)
            
            with gr.Row() as controls:
                prev_btn = gr.Button("⬅ Last", visible=False)
                index_slider = gr.Slider(0, 1, value=0, step=1, label="BPE index", visible=False)
                next_btn = gr.Button("⮕ Next", visible=False)
            
            bpe_display = gr.Markdown("Current BPE: ", visible=False)

    # 事件处理
    def on_run_clicked(model_type, image, text):
        global current_vis, current_bpe, current_index
        current_index = 0  # Reset index when new image is processed
        image, vis, bpe = process_image(*load_model(model_type), model_type, image, text)
        # Update the slider range and set value to 0
        slider_max_val = len(current_bpe) - 1
        bpe_text = format_bpe_display(bpe)
        return image, vis, bpe_text, slider_max_val

    run_btn.click(
        on_run_clicked,
        inputs=[model_type, image_input, text_input],
        outputs=[orig_img, heatmap, bpe_display, index_slider],
    ).then(
        lambda max_val: (gr.update(visible=True), gr.update(visible=True, maximum=max_val, value=0), gr.update(visible=True), gr.update(visible=True)),
        inputs=index_slider,
        outputs=[prev_btn, index_slider, next_btn, bpe_display],
    )
    
    prev_btn.click(
        lambda: (*update_index(-1), current_index),
        outputs=[heatmap, bpe_display, index_slider]
    )
    
    next_btn.click(
        lambda: (*update_index(1), current_index),
        outputs=[heatmap, bpe_display, index_slider]
    )
    
    index_slider.change(
        lambda x: (current_vis[x], format_bpe_display(current_bpe[x])),
        inputs=index_slider,
        outputs=[heatmap, bpe_display]
    )

if __name__ == "__main__":
    demo.launch()