File size: 8,460 Bytes
841bef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import os
import argparse
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as T
from transformers import AutoTokenizer
import gradio as gr
from resnet50 import build_model
from utils import generate_similiarity_map, post_process, load_tokenizer, build_transform_R50
from utils import IMAGENET_MEAN, IMAGENET_STD
from internvl.train.dataset import dynamic_preprocess
from internvl.model.internvl_chat import InternVLChatModel
# 模型配置
CHECKPOINTS = {
"TokenOCR-4096-English-seg": "/path/to/TokenOCR_4096_English_seg",
"TokenOCR-2048-Bilingual-seg": "/path/to/TokenOCR_2048_Binlinual_seg",
"R50":"model/checkpoint.pth",
"R50_siglip": "/path/to/R50_siglip_checkpoint.pth"
}
# 全局变量
current_vis = []
current_bpe = []
current_index = 0
def load_model(check_type):
device = torch.device("cpu")
if check_type == 'R50':
tokenizer = load_tokenizer('tokenizer_path')
model = build_model(argparse.Namespace()).eval()
model.load_state_dict(torch.load(CHECKPOINTS['R50'], map_location='cpu')['model'])
transform = build_transform_R50(normalize_type='imagenet')
elif check_type == 'R50_siglip':
tokenizer = load_tokenizer('tokenizer_path')
model = build_model(argparse.Namespace()).eval()
model.load_state_dict(torch.load(CHECKPOINTS['R50_siglip'], map_location='cpu')['model'])
transform = build_transform_R50(normalize_type='imagenet')
elif 'TokenOCR' in check_type:
model_path = CHECKPOINTS[check_type]
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
model = InternVLChatModel.from_pretrained(model_path, torch_dtype=torch.bfloat16).eval()
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB')),
T.Resize((224, 224)),
T.ToTensor(),
T.Normalize(IMAGENET_MEAN, IMAGENET_STD)
])
return model.to(device), tokenizer, transform, device
def process_image(model, tokenizer, transform, device, check_type, image, text):
global current_vis, current_bpe
src_size = image.size
if 'TokenOCR' in check_type:
images, target_ratio = dynamic_preprocess(image, min_num=1, max_num=12,
image_size=model.config.force_image_size,
use_thumbnail=model.config.use_thumbnail,
return_ratio=True)
pixel_values = torch.stack([transform(img) for img in images]).to(device)
else:
pixel_values = torch.stack([transform(image)]).to(device)
target_ratio = (1, 1)
# 文本处理
text += ' '
input_ids = tokenizer(text)['input_ids'][1:]
input_ids = torch.tensor(input_ids, device=device)
# 获取嵌入
with torch.no_grad():
if 'R50' in check_type:
text_embeds = model.language_embedding(input_ids)
else:
text_embeds = model.tok_embeddings(input_ids)
vit_embeds, size1 = model.forward_tokenocr(pixel_values.to(device))
vit_embeds, size2 = post_process(vit_embeds, target_ratio, check_type)
# 计算相似度
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
vit_embeds = vit_embeds / vit_embeds.norm(dim=-1, keepdim=True)
similarity = text_embeds @ vit_embeds.T
resized_size = size1 if size1 is not None else size2
# print(f"text_embeds shape: {text_embeds.shape}, numel: {text_embeds.numel()}") # text_embeds shape: torch.Size([4, 2048]), numel: 8192
# print(f"vit_embeds shape: {vit_embeds.shape}, numel: {vit_embeds.numel()}") # vit_embeds shape: torch.Size([9728, 2048]), numel: 19922944
# print(f"similarity shape: {similarity.shape}, numel: {similarity.numel()}")# similarity shape: torch.Size([4, 9728]), numel: 38912
# 生成可视化
attn_map = similarity.reshape(len(text_embeds), resized_size[0], resized_size[1])
# attn_map = similarity.reshape(len(text_embeds), *target_ratio)
all_bpe_strings = [tokenizer.decode(input_id) for input_id in input_ids]
current_vis = generate_similiarity_map([image], attn_map,
[tokenizer.decode([i]) for i in input_ids],
[], target_ratio, src_size)
current_bpe = [tokenizer.decode([i]) for i in input_ids]
# current_bpe[-1] = 'Input text'
current_bpe[-1] = text
return image, current_vis[0], current_bpe[0]
# 事件处理函数
def update_index(change):
global current_index
current_index = max(0, min(len(current_vis) - 1, current_index + change))
return current_vis[current_index], format_bpe_display(current_bpe[current_index])
def format_bpe_display(bpe):
# 使用HTML标签来设置字体大小、颜色,加粗,并居中
return f"<div style='text-align:center; font-size:20px;'><strong>Current BPE: <span style='color:red;'>{bpe}</span></strong></div>"
# Gradio界面
with gr.Blocks(title="BPE Visualization Demo") as demo:
gr.Markdown("## BPE Visualization Demo - TokenOCR基座模型能力可视化")
with gr.Row():
with gr.Column(scale=0.5):
model_type = gr.Dropdown(
choices=["TokenOCR-4096-English-seg", "TokenOCR-2048-Bilingual-seg", "R50", "R50_siglip"],
label="Select model type",
value="R50" # 设置默认值为第一个选项
)
image_input = gr.Image(label="Upload images", type="pil")
text_input = gr.Textbox(label="Input text")
run_btn = gr.Button("RUN")
gr.Examples(
examples=[
[os.path.join("examples", "examples0.jpg"), "Veterans and Benefits"],
[os.path.join("examples", "examples1.jpg"), "Refreshers"],
[os.path.join("examples", "examples2.png"), "Vision Transformer"]
],
inputs=[image_input, text_input],
label="Sample input"
)
with gr.Column(scale=2):
gr.Markdown("<p style='font-size:20px;'><span style='color:red;'>If the input text is not included in the image</span>, the attention map will show a lot of noise (the actual response value is very low), since we normalize the attention map according to the relative value.</p>")
with gr.Row():
orig_img = gr.Image(label="Original picture", interactive=False)
heatmap = gr.Image(label="BPE visualization", interactive=False)
with gr.Row() as controls:
prev_btn = gr.Button("⬅ Last", visible=False)
index_slider = gr.Slider(0, 1, value=0, step=1, label="BPE index", visible=False)
next_btn = gr.Button("⮕ Next", visible=False)
bpe_display = gr.Markdown("Current BPE: ", visible=False)
# 事件处理
def on_run_clicked(model_type, image, text):
global current_vis, current_bpe, current_index
current_index = 0 # Reset index when new image is processed
image, vis, bpe = process_image(*load_model(model_type), model_type, image, text)
# Update the slider range and set value to 0
slider_max_val = len(current_bpe) - 1
bpe_text = format_bpe_display(bpe)
return image, vis, bpe_text, slider_max_val
run_btn.click(
on_run_clicked,
inputs=[model_type, image_input, text_input],
outputs=[orig_img, heatmap, bpe_display, index_slider],
).then(
lambda max_val: (gr.update(visible=True), gr.update(visible=True, maximum=max_val, value=0), gr.update(visible=True), gr.update(visible=True)),
inputs=index_slider,
outputs=[prev_btn, index_slider, next_btn, bpe_display],
)
prev_btn.click(
lambda: (*update_index(-1), current_index),
outputs=[heatmap, bpe_display, index_slider]
)
next_btn.click(
lambda: (*update_index(1), current_index),
outputs=[heatmap, bpe_display, index_slider]
)
index_slider.change(
lambda x: (current_vis[x], format_bpe_display(current_bpe[x])),
inputs=index_slider,
outputs=[heatmap, bpe_display]
)
if __name__ == "__main__":
demo.launch() |