File size: 7,195 Bytes
841bef5
 
 
 
 
 
 
 
 
 
 
 
 
0afd727
841bef5
 
 
0afd727
 
841bef5
 
 
312b679
aa84990
 
 
0afd727
841bef5
b6f1806
841bef5
 
 
 
 
 
 
 
 
 
 
 
0afd727
841bef5
312b679
841bef5
 
 
 
 
 
 
 
 
 
 
aa84990
841bef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44e7509
841bef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa84990
 
841bef5
 
 
 
aa84990
 
 
 
 
841bef5
 
758eccd
841bef5
 
 
 
f39b1b0
841bef5
b6f1806
841bef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa84990
 
 
 
 
841bef5
 
0afd727
841bef5
aa84990
841bef5
aa84990
841bef5
 
 
 
b6f1806
aa84990
 
 
 
 
 
 
 
 
 
841bef5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import argparse
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as T
from transformers import AutoTokenizer
import gradio as gr
from resnet50 import build_model
from utils import generate_similiarity_map, post_process, load_tokenizer, build_transform_R50
from utils import IMAGENET_MEAN, IMAGENET_STD
from internvl.train.dataset import dynamic_preprocess
from internvl.model.internvl_chat import InternVLChatModel
import spaces

# 模型配置
CHECKPOINTS = {
    "TokenFD_4096_English_seg": "TongkunGuan/TokenFD_4096_English_seg",
    "TokenFD_2048_Bilingual_seg": "TongkunGuan/TokenFD_2048_Bilingual_seg",
}

# 全局变量
HF_TOKEN = os.getenv("HF_TOKEN")
current_vis = []  # 存储所有 heatmap
current_bpe = []  # 存储所有 BPE
current_index = 0  # 当前显示的 heatmap 和 BPE 的索引

def load_model(check_type):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if check_type == 'R50':
        tokenizer = load_tokenizer('tokenizer_path')
        model = build_model(argparse.Namespace()).eval()
        model.load_state_dict(torch.load(CHECKPOINTS['R50'], map_location='cpu')['model'])
        transform = build_transform_R50(normalize_type='imagenet')

    elif check_type == 'R50_siglip':
        tokenizer = load_tokenizer('tokenizer_path')
        model = build_model(argparse.Namespace()).eval()
        model.load_state_dict(torch.load(CHECKPOINTS['R50_siglip'], map_location='cpu')['model'])
        transform = build_transform_R50(normalize_type='imagenet')

    elif 'TokenFD' in check_type:
        model_path = CHECKPOINTS[check_type]
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False, use_auth_token=HF_TOKEN)
        model = InternVLChatModel.from_pretrained(model_path, torch_dtype=torch.bfloat16).eval()
        transform = T.Compose([
            T.Lambda(lambda img: img.convert('RGB')),
            T.Resize((224, 224)),
            T.ToTensor(),
            T.Normalize(IMAGENET_MEAN, IMAGENET_STD)
        ])
    
    return model.to(device), tokenizer, transform, device

def process_image(model, tokenizer, transform, device, check_type, image, text):
    global current_vis, current_bpe, current_index
    src_size = image.size
    if 'TokenOCR' in check_type:
        images, target_ratio = dynamic_preprocess(image, min_num=1, max_num=12, 
                                                  image_size=model.config.force_image_size,
                                                  use_thumbnail=model.config.use_thumbnail,
                                                  return_ratio=True)
        pixel_values = torch.stack([transform(img) for img in images]).to(device)
    else:
        pixel_values = torch.stack([transform(image)]).to(device)
        target_ratio = (1, 1)

    # 文本处理
    text += ' '
    input_ids = tokenizer(text)['input_ids'][1:]
    input_ids = torch.tensor(input_ids, device=device)
    
    # 获取嵌入
    with torch.no_grad():
        if 'R50' in check_type:
            text_embeds = model.language_embedding(input_ids)
        else:
            text_embeds = model.tok_embeddings(input_ids)
        
        vit_embeds, size1 = model.forward_tokenocr(pixel_values.to(torch.bfloat16).to(device))
        vit_embeds, size2 = post_process(vit_embeds, target_ratio, check_type)
        
        # 计算相似度
        text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
        vit_embeds = vit_embeds / vit_embeds.norm(dim=-1, keepdim=True)
        similarity = text_embeds @ vit_embeds.T
        resized_size = size1 if size1 is not None else size2

    # 生成可视化
    attn_map = similarity.reshape(len(text_embeds), resized_size[0], resized_size[1])
    all_bpe_strings = [tokenizer.decode(input_id) for input_id in input_ids]
    current_vis = generate_similiarity_map([image], attn_map, 
                                           [tokenizer.decode([i]) for i in input_ids], 
                                           [], target_ratio, src_size)
    
    current_bpe = [tokenizer.decode([i]) for i in input_ids]
    current_bpe[-1] = text
    current_index = 0  # 重置索引
    return image, current_vis[current_index], format_bpe_display(current_bpe[current_index])

def format_bpe_display(bpe):
    return f"<div style='text-align:center; font-size:20px;'><strong>Current BPE: <span style='color:red;'>{bpe}</span></strong></div>"

def update_index(change):
    global current_vis, current_bpe, current_index
    current_index = max(0, min(len(current_vis) - 1, current_index + change))
    return current_vis[current_index], format_bpe_display(current_bpe[current_index])

# Gradio界面
with gr.Blocks(title="BPE Visualization Demo") as demo:
    gr.Markdown("## BPE Visualization Demo - TokenFD基座模型能力可视化")
    
    with gr.Row():
        with gr.Column(scale=0.5):
            model_type = gr.Dropdown(
                choices=["TokenFD_4096_English_seg", "TokenFD_2048_Bilingual_seg", "R50", "R50_siglip"],
                label="Select model type",
                value="TokenOCR_4096_English_seg"
            )
            image_input = gr.Image(label="Upload images", type="pil")
            text_input = gr.Textbox(label="Input text")

            run_btn = gr.Button("RUN")
            
            gr.Examples(
                examples=[
                    [os.path.join("examples", "examples0.jpg"), "Veterans and Benefits"],
                    [os.path.join("examples", "examples1.jpg"), "Refreshers"],
                    [os.path.join("examples", "examples2.png"), "Vision Transformer"]
                ],
                inputs=[image_input, text_input],
                label="Sample input"
            )
        
        with gr.Column(scale=2):
            gr.Markdown("<p style='font-size:20px;'><span style='color:red;'>If the input text is not included in the image</span>, the attention map will show a lot of noise (the actual response value is very low), since we normalize the attention map according to the relative value.</p>")

            with gr.Row():
                orig_img = gr.Image(label="Original picture", interactive=False)
                heatmap = gr.Image(label="BPE visualization", interactive=False)
            
            with gr.Row():
                prev_btn = gr.Button("⬅ Previous")
                next_btn = gr.Button("Next ⮕")
            
            bpe_display = gr.Markdown("Current BPE: ", visible=True)

    # 事件处理
    @spaces.GPU
    def on_run_clicked(model_type, image, text):
        global current_vis, current_bpe, current_index
        image, vis, bpe = process_image(*load_model(model_type), model_type, image, text)
        return image, vis, bpe

    run_btn.click(
        on_run_clicked,
        inputs=[model_type, image_input, text_input],
        outputs=[orig_img, heatmap, bpe_display],
    )

    prev_btn.click(
        lambda: update_index(-1),
        outputs=[heatmap, bpe_display]
    )

    next_btn.click(
        lambda: update_index(1),
        outputs=[heatmap, bpe_display]
    )

if __name__ == "__main__":
    demo.launch()