Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,367 Bytes
b6f1806 841bef5 0afd727 841bef5 0afd727 841bef5 312b679 841bef5 0afd727 841bef5 b6f1806 841bef5 0afd727 841bef5 312b679 841bef5 b6f1806 841bef5 44e7509 841bef5 b6f1806 841bef5 758eccd 841bef5 f39b1b0 841bef5 b6f1806 841bef5 0afd727 841bef5 b6f1806 841bef5 b6f1806 841bef5 b6f1806 841bef5 b6f1806 841bef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# import os
# import argparse
# import numpy as np
# from PIL import Image
# import torch
# import torchvision.transforms as T
# from transformers import AutoTokenizer
# import gradio as gr
# from resnet50 import build_model
# from utils import generate_similiarity_map, post_process, load_tokenizer, build_transform_R50
# from utils import IMAGENET_MEAN, IMAGENET_STD
# from internvl.train.dataset import dynamic_preprocess
# from internvl.model.internvl_chat import InternVLChatModel
# import spaces
# # 模型配置
# CHECKPOINTS = {
# "TokenFD_4096_English_seg": "TongkunGuan/TokenFD_4096_English_seg",
# "TokenFD_2048_Bilingual_seg": "TongkunGuan/TokenFD_2048_Bilingual_seg",
# }
# # 全局变量
# HF_TOKEN = os.getenv("HF_TOKEN")
# current_vis = []
# current_bpe = []
# current_index = 0
# def load_model(check_type):
# # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = torch.device("cuda")
# if check_type == 'R50':
# tokenizer = load_tokenizer('tokenizer_path')
# model = build_model(argparse.Namespace()).eval()
# model.load_state_dict(torch.load(CHECKPOINTS['R50'], map_location='cpu')['model'])
# transform = build_transform_R50(normalize_type='imagenet')
# elif check_type == 'R50_siglip':
# tokenizer = load_tokenizer('tokenizer_path')
# model = build_model(argparse.Namespace()).eval()
# model.load_state_dict(torch.load(CHECKPOINTS['R50_siglip'], map_location='cpu')['model'])
# transform = build_transform_R50(normalize_type='imagenet')
# elif 'TokenFD' in check_type:
# model_path = CHECKPOINTS[check_type]
# tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False, use_auth_token=HF_TOKEN)
# model = InternVLChatModel.from_pretrained(model_path, torch_dtype=torch.bfloat16).eval()
# transform = T.Compose([
# T.Lambda(lambda img: img.convert('RGB')),
# T.Resize((224, 224)),
# T.ToTensor(),
# T.Normalize(IMAGENET_MEAN, IMAGENET_STD)
# ])
# return model.to(device), tokenizer, transform, device
# def process_image(model, tokenizer, transform, device, check_type, image, text):
# global current_vis, current_bpe, current_index
# src_size = image.size
# if 'TokenOCR' in check_type:
# images, target_ratio = dynamic_preprocess(image, min_num=1, max_num=12,
# image_size=model.config.force_image_size,
# use_thumbnail=model.config.use_thumbnail,
# return_ratio=True)
# pixel_values = torch.stack([transform(img) for img in images]).to(device)
# else:
# pixel_values = torch.stack([transform(image)]).to(device)
# target_ratio = (1, 1)
# # 文本处理
# text += ' '
# input_ids = tokenizer(text)['input_ids'][1:]
# input_ids = torch.tensor(input_ids, device=device)
# # 获取嵌入
# with torch.no_grad():
# if 'R50' in check_type:
# text_embeds = model.language_embedding(input_ids)
# else:
# text_embeds = model.tok_embeddings(input_ids)
# vit_embeds, size1 = model.forward_tokenocr(pixel_values.to(torch.bfloat16).to(device))
# print("vit_embeds",vit_embeds)
# print("vit_embeds,shape",vit_embeds.shape)
# print("target_ratio",target_ratio)
# print("check_type",check_type)
# vit_embeds, size2 = post_process(vit_embeds, target_ratio, check_type)
# # 计算相似度
# text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
# vit_embeds = vit_embeds / vit_embeds.norm(dim=-1, keepdim=True)
# similarity = text_embeds @ vit_embeds.T
# resized_size = size1 if size1 is not None else size2
# # print(f"text_embeds shape: {text_embeds.shape}, numel: {text_embeds.numel()}") # text_embeds shape: torch.Size([4, 2048]), numel: 8192
# # print(f"vit_embeds shape: {vit_embeds.shape}, numel: {vit_embeds.numel()}") # vit_embeds shape: torch.Size([9728, 2048]), numel: 19922944
# # print(f"similarity shape: {similarity.shape}, numel: {similarity.numel()}")# similarity shape: torch.Size([4, 9728]), numel: 38912
# # 生成可视化
# attn_map = similarity.reshape(len(text_embeds), resized_size[0], resized_size[1])
# # attn_map = similarity.reshape(len(text_embeds), *target_ratio)
# all_bpe_strings = [tokenizer.decode(input_id) for input_id in input_ids]
# current_vis = generate_similiarity_map([image], attn_map,
# [tokenizer.decode([i]) for i in input_ids],
# [], target_ratio, src_size)
# current_bpe = [tokenizer.decode([i]) for i in input_ids]
# # current_bpe[-1] = 'Input text'
# current_bpe[-1] = text
# print("current_vis",len(current_vis))
# print("current_bpe",len(current_bpe))
# return image, current_vis[0], current_bpe[0]
# # 事件处理函数
# def update_index(change):
# global current_vis, current_bpe, current_index
# current_index = max(0, min(len(current_vis) - 1, current_index + change))
# return current_vis[current_index], format_bpe_display(current_bpe[current_index])
# def format_bpe_display(bpe):
# # 使用HTML标签来设置字体大小、颜色,加粗,并居中
# return f"<div style='text-align:center; font-size:20px;'><strong>Current BPE: <span style='color:red;'>{bpe}</span></strong></div>"
# def update_slider_index(x):
# print(f"x: {x}, current_vis length: {len(current_vis)}, current_bpe length: {len(current_bpe)}")
# if 0 <= x < len(current_vis) and 0 <= x < len(current_bpe):
# return current_vis[x], format_bpe_display(current_bpe[x])
# else:
# return None, "索引超出范围"
# # Gradio界面
# with gr.Blocks(title="BPE Visualization Demo") as demo:
# gr.Markdown("## BPE Visualization Demo - TokenFD基座模型能力可视化")
# with gr.Row():
# with gr.Column(scale=0.5):
# model_type = gr.Dropdown(
# choices=["TokenFD_4096_English_seg", "TokenFD_2048_Bilingual_seg", "R50", "R50_siglip"],
# label="Select model type",
# value="TokenOCR_4096_English_seg" # 设置默认值为第一个选项
# )
# image_input = gr.Image(label="Upload images", type="pil")
# text_input = gr.Textbox(label="Input text")
# run_btn = gr.Button("RUN")
# gr.Examples(
# examples=[
# [os.path.join("examples", "examples0.jpg"), "Veterans and Benefits"],
# [os.path.join("examples", "examples1.jpg"), "Refreshers"],
# [os.path.join("examples", "examples2.png"), "Vision Transformer"]
# ],
# inputs=[image_input, text_input],
# label="Sample input"
# )
# with gr.Column(scale=2):
# gr.Markdown("<p style='font-size:20px;'><span style='color:red;'>If the input text is not included in the image</span>, the attention map will show a lot of noise (the actual response value is very low), since we normalize the attention map according to the relative value.</p>")
# with gr.Row():
# orig_img = gr.Image(label="Original picture", interactive=False)
# heatmap = gr.Image(label="BPE visualization", interactive=False)
# with gr.Row() as controls:
# prev_btn = gr.Button("⬅ Last", visible=False)
# index_slider = gr.Slider(0, 1, value=0, step=1, label="BPE index", visible=False)
# next_btn = gr.Button("⮕ Next", visible=False)
# bpe_display = gr.Markdown("Current BPE: ", visible=False)
# # 事件处理
# @spaces.GPU
# def on_run_clicked(model_type, image, text):
# global current_vis, current_bpe, current_index
# current_index = 0 # Reset index when new image is processed
# image, vis, bpe = process_image(*load_model(model_type), model_type, image, text)
# # Update the slider range and set value to 0
# slider_max_val = len(current_bpe) - 1
# bpe_text = format_bpe_display(bpe)
# print("current_vis",len(current_vis))
# print("current_bpe",len(current_bpe))
# return image, vis, bpe_text, slider_max_val
# run_btn.click(
# on_run_clicked,
# inputs=[model_type, image_input, text_input],
# outputs=[orig_img, heatmap, bpe_display, index_slider],
# ).then(
# lambda max_val: (gr.update(visible=True), gr.update(visible=True, maximum=max_val, value=0), gr.update(visible=True), gr.update(visible=True)),
# inputs=index_slider,
# outputs=[prev_btn, index_slider, next_btn, bpe_display],
# )
# prev_btn.click(
# lambda: (*update_index(-1), current_index),
# outputs=[heatmap, bpe_display, index_slider]
# )
# next_btn.click(
# lambda: (*update_index(1), current_index),
# outputs=[heatmap, bpe_display, index_slider]
# )
# # index_slider.change(
# # lambda x: (current_vis[x], format_bpe_display(current_bpe[x])) if 0<=x<len(current_vis else (None,"Invaild")
# # inputs=index_slider,
# # outputs=[heatmap, bpe_display]
# # )
# index_slider.change(
# update_slider_index,
# inputs=index_slider,
# outputs=[heatmap, bpe_display]
# )
# if __name__ == "__main__":
# demo.launch()
import os
import argparse
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as T
from transformers import AutoTokenizer
import gradio as gr
from resnet50 import build_model
from utils import generate_similiarity_map, post_process, load_tokenizer, build_transform_R50
from utils import IMAGENET_MEAN, IMAGENET_STD
from internvl.train.dataset import dynamic_preprocess
from internvl.model.internvl_chat import InternVLChatModel
import spaces
# 模型配置
CHECKPOINTS = {
"TokenFD_4096_English_seg": "TongkunGuan/TokenFD_4096_English_seg",
"TokenFD_2048_Bilingual_seg": "TongkunGuan/TokenFD_2048_Bilingual_seg",
}
# 全局变量
HF_TOKEN = os.getenv("HF_TOKEN")
current_vis = []
current_bpe = []
def load_model(check_type):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if check_type == 'R50':
tokenizer = load_tokenizer('tokenizer_path')
model = build_model(argparse.Namespace()).eval()
model.load_state_dict(torch.load(CHECKPOINTS['R50'], map_location='cpu')['model'])
transform = build_transform_R50(normalize_type='imagenet')
elif check_type == 'R50_siglip':
tokenizer = load_tokenizer('tokenizer_path')
model = build_model(argparse.Namespace()).eval()
model.load_state_dict(torch.load(CHECKPOINTS['R50_siglip'], map_location='cpu')['model'])
transform = build_transform_R50(normalize_type='imagenet')
elif 'TokenFD' in check_type:
model_path = CHECKPOINTS[check_type]
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False, use_auth_token=HF_TOKEN)
model = InternVLChatModel.from_pretrained(model_path, torch_dtype=torch.bfloat16).eval()
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB')),
T.Resize((224, 224)),
T.ToTensor(),
T.Normalize(IMAGENET_MEAN, IMAGENET_STD)
])
return model.to(device), tokenizer, transform, device
def process_image(model, tokenizer, transform, device, check_type, image, text):
global current_vis, current_bpe
src_size = image.size
if 'TokenOCR' in check_type:
images, target_ratio = dynamic_preprocess(image, min_num=1, max_num=12,
image_size=model.config.force_image_size,
use_thumbnail=model.config.use_thumbnail,
return_ratio=True)
pixel_values = torch.stack([transform(img) for img in images]).to(device)
else:
pixel_values = torch.stack([transform(image)]).to(device)
target_ratio = (1, 1)
# 文本处理
text += ' '
input_ids = tokenizer(text)['input_ids'][1:]
input_ids = torch.tensor(input_ids, device=device)
# 获取嵌入
with torch.no_grad():
if 'R50' in check_type:
text_embeds = model.language_embedding(input_ids)
else:
text_embeds = model.tok_embeddings(input_ids)
vit_embeds, size1 = model.forward_tokenocr(pixel_values.to(torch.bfloat16).to(device))
vit_embeds, size2 = post_process(vit_embeds, target_ratio, check_type)
# 计算相似度
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
vit_embeds = vit_embeds / vit_embeds.norm(dim=-1, keepdim=True)
similarity = text_embeds @ vit_embeds.T
resized_size = size1 if size1 is not None else size2
# 生成可视化
attn_map = similarity.reshape(len(text_embeds), resized_size[0], resized_size[1])
all_bpe_strings = [tokenizer.decode(input_id) for input_id in input_ids]
current_vis = generate_similiarity_map([image], attn_map,
[tokenizer.decode([i]) for i in input_ids],
[], target_ratio, src_size)
current_bpe = [tokenizer.decode([i]) for i in input_ids]
current_bpe[-1] = text
return image, current_vis, current_bpe
def format_bpe_display(bpe):
return f"<div style='text-align:center; font-size:20px;'><strong>Current BPE: <span style='color:red;'>{bpe}</span></strong></div>"
# Gradio界面
with gr.Blocks(title="BPE Visualization Demo") as demo:
gr.Markdown("## BPE Visualization Demo - TokenFD基座模型能力可视化")
with gr.Row():
with gr.Column(scale=0.5):
model_type = gr.Dropdown(
choices=["TokenFD_4096_English_seg", "TokenFD_2048_Bilingual_seg", "R50", "R50_siglip"],
label="Select model type",
value="TokenOCR_4096_English_seg"
)
image_input = gr.Image(label="Upload images", type="pil")
text_input = gr.Textbox(label="Input text")
run_btn = gr.Button("RUN")
gr.Examples(
examples=[
[os.path.join("examples", "examples0.jpg"), "Veterans and Benefits"],
[os.path.join("examples", "examples1.jpg"), "Refreshers"],
[os.path.join("examples", "examples2.png"), "Vision Transformer"]
],
inputs=[image_input, text_input],
label="Sample input"
)
with gr.Column(scale=2):
gr.Markdown("<p style='font-size:20px;'><span style='color:red;'>If the input text is not included in the image</span>, the attention map will show a lot of noise (the actual response value is very low), since we normalize the attention map according to the relative value.</p>")
with gr.Row():
orig_img = gr.Image(label="Original picture", interactive=False)
heatmap = gr.Image(label="BPE visualization", interactive=False)
bpe_display = gr.Markdown("Current BPE: ", visible=False)
# 事件处理
@spaces.GPU
def on_run_clicked(model_type, image, text):
global current_vis, current_bpe
image, vis, bpe = process_image(*load_model(model_type), model_type, image, text)
bpe_text = format_bpe_display(bpe)
return image, vis[0], bpe_text
run_btn.click(
on_run_clicked,
inputs=[model_type, image_input, text_input],
outputs=[orig_img, heatmap, bpe_display],
).then(
lambda: (gr.update(visible=True)),
outputs=[bpe_display],
)
if __name__ == "__main__":
demo.launch() |