Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,013 Bytes
841bef5 05ef035 841bef5 3d2e6db 841bef5 9767857 841bef5 9767857 841bef5 9767857 841bef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
import torch
import torch.nn as nn
from internvl.train.dataset import build_transform, dynamic_preprocess
from internvl.model.internvl_chat import InternVisionModel, InternVLChatModel
from torchvision.utils import make_grid
import torchvision.transforms as T
import matplotlib.pyplot as plt
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
import cv2
from PIL import Image
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
CLIP_MEAN = (0.4814546, 0.4578275, 0.40821073)
CLIP_STD = (0.2686295, 0.2613025, 0.2757711)
SIGLIP_MEAN = (0.5, 0.5, 0.5)
SIGLIP_STD = (0.5, 0.5, 0.5)
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
IMG_START_TOKEN = '<img>'
IMG_END_TOKEN = '</img>'
QUAD_START_TOKEN = '<quad>'
QUAD_END_TOKEN = '</quad>'
REF_START_TOKEN = '<ref>'
REF_END_TOKEN = '</ref>'
BOX_START_TOKEN = '<box>'
BOX_END_TOKEN = '</box>'
def load_model(config, state_dict):
vision_model = InternVisionModel(config.vision_config)
vit = InternVLChatModel(config, vision_model).to(torch.bfloat16)
vit.load_state_dict(state_dict, strict=False)
tok_embeddings = nn.Embedding(config.llm_config.vocab_size, config.llm_config.hidden_size, 2).to(torch.bfloat16)
tok_embeddings.weight = nn.Parameter(state_dict['language_model.model.tok_embeddings.weight'])
return vit, tok_embeddings
def load_image(image_path):
transform = get_transform(is_train=False, image_size=448)
image = Image.open(image_path).convert('RGB')
images, target_aspect_ratio = dynamic_preprocess(image, min_num=1, max_num=12,
image_size=448, use_thumbnail=True, return_ratio=True)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values).to(torch.bfloat16)
return pixel_values, images, target_aspect_ratio
def get_similarity_map(sm, shape, min_max=True, threshold=0.2):
B, N, H, W = sm.shape
sm = sm.reshape(B, N, H*W)
if min_max:
# min-max norm
sm = (sm - sm.min(2, keepdim=True)[0]) / (sm.max(2, keepdim=True)[0] - sm.min(2, keepdim=True)[0])
else:
sm = sm > threshold
sm = sm.float()
# reshape
sm = sm.reshape(B, N, H, W).float()
# interpolate
sm = torch.nn.functional.interpolate(sm, shape, mode='bilinear')
return sm
def build_transform_R50(normalize_type='imagenet'):
if normalize_type == 'imagenet':
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
elif normalize_type == 'clip':
MEAN, STD = CLIP_MEAN, CLIP_STD
elif normalize_type == 'siglip':
MEAN, STD = SIGLIP_MEAN, SIGLIP_STD
else:
raise NotImplementedError
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def load_tokenizer(tokenizer_path):
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path, add_eos_token=False, trust_remote_code=True, use_fast=False)
tokenizer.tokenizer_path = tokenizer_path
tokenizer.model_max_length = 8192
token_list = [IMG_START_TOKEN, IMG_END_TOKEN, IMG_CONTEXT_TOKEN,
QUAD_START_TOKEN, QUAD_END_TOKEN, REF_START_TOKEN,
REF_END_TOKEN, BOX_START_TOKEN, BOX_END_TOKEN]
num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=True)
return tokenizer
def get_transform(is_train, image_size):
# Build transformation function
transform = build_transform(is_train=is_train, input_size=image_size,
pad2square=False, normalize_type='imagenet')
return transform
def post_process(vit_embeds, target_aspect_ratio, model_type='VIT'):
if model_type in ["TokenFD_4096_English_seg", "TokenFD_2048_Bilingual_seg"]:
h = w = int(vit_embeds.shape[1] ** 0.5)
c = vit_embeds.shape[-1]
# vit_embeds_local = vit_embeds[:-1].reshape(-1, h, w, c).permute(0, 3, 1, 2)
if vit_embeds.shape[0] == 1:
vit_embeds_local = vit_embeds.reshape(-1, h, w, c).permute(0, 3, 1, 2)
else:
vit_embeds_local = vit_embeds[:-1].reshape(-1, h, w, c).permute(0, 3, 1, 2)
vit_embeds_local = make_grid(vit_embeds_local, nrow=target_aspect_ratio[0], padding=0, normalize=False)
vit_embeds_local = vit_embeds_local.permute(1,2,0)
H, W, C = vit_embeds_local.shape
vit_embeds_local = vit_embeds_local.reshape(H*W, C)
return vit_embeds_local, (H, W)
if 'R50' in model_type:
vit_embeds = vit_embeds.reshape(-1, vit_embeds.shape[-1])
return vit_embeds, None
def generate_similiarity_map(images, attn_map, all_bpe_strings, vis_list, target_aspect_ratio=(1,1), src_iamge_size=(1014, 1024), image_size=448):
# if isinstance(images, list):
# print("111111111")
# if len(images) == 1:
# images_vis = torch.stack([T.ToTensor()(image) for image in images])
# else:
# images_vis = torch.stack([T.ToTensor()(image) for image in images[:-1]])
# images_vis = make_grid(images_vis, nrow=target_aspect_ratio[0], padding=0, normalize=False)
# print("image_size",image_size)
# print("target_aspect_ratio[0]",target_aspect_ratio[0])
# print("target_aspect_ratio[1]",target_aspect_ratio[1])
# target_width = image_size * target_aspect_ratio[0]
# target_height = image_size * target_aspect_ratio[1]
# else:
# print("222222222")
# images_vis = T.ToTensor()(images)
# target_height = images.size[1]
# target_width = images.size[0]
# print("images_vis",images_vis)
# print("target_height",images.size[1])
# print("target_width",images.size[0])
if len(images) == 1:
images_vis = torch.stack([T.ToTensor()(image) for image in images])
else:
images_vis = torch.stack([T.ToTensor()(image) for image in images[:-1]])
images_vis = make_grid(images_vis, nrow=target_aspect_ratio[0], padding=0, normalize=False)
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
# images = images[0]
# images_vis = T.ToTensor()(images) # images [<PIL.Image.Image image mode=RGB size=1024x608 at 0x7F9B6FC24B80>]
# print("images",images)
# print("images_vis",images_vis)
# target_height = images.size[1]
# target_width = images.size[0]
print("attn_map",attn_map.shape)# torch.Size([4, 76, 128])
print("target_height",target_height) #有问题 608
print("target_width",target_width) #有问题 1024
attn_norm = get_similarity_map(attn_map.unsqueeze(0), (target_height, target_width), min_max=True, threshold=0.15)
print("attn_norm ",attn_norm.shape) # 有问题attn_norm torch.Size([1, 4, 448, 448])
print('all_bpe_strings:{:}'.format(all_bpe_strings))
# indexes_without_space = torch.tensor([index for index, string in enumerate(all_bpe_strings) if ' ' is not string])
# Draw similarity map
# print(images_vis.shape)
images_vis = (images_vis.permute(1,2,0).cpu().numpy() * 125).astype('uint8')
for b in range(attn_norm.shape[0]):
for n in range(attn_norm.shape[1]):
vis = (attn_norm[b, n, :, :].float().detach().cpu().numpy() * 255).astype('uint8')
vis = cv2.applyColorMap(vis, cv2.COLORMAP_JET)
print("images_vis",images_vis.shape)
print("vis",vis.shape)
vis = images_vis * 0.5 + vis * 0.5
vis = cv2.cvtColor(vis.astype('uint8'), cv2.COLOR_BGR2RGB)
vis = cv2.resize(vis, src_iamge_size)
vis_list.append(vis) # Add each visualization to the list
# without_space_norm = attn_norm[b, indexes_without_space, :, :].max(0)[0]
# space_norm = attn_norm[b, -1, :, :]
# all_attn_norm = without_space_norm - space_norm
# print(f'min:{all_attn_norm.min()};max:{all_attn_norm.max()}')
# all_attn_norm = (all_attn_norm - all_attn_norm.min()) / (all_attn_norm.max() - all_attn_norm.min())
# all_attn_norm = (all_attn_norm.float().detach().cpu().numpy() * 255).astype('uint8')
# vis = cv2.applyColorMap(all_attn_norm, cv2.COLORMAP_JET)
# vis = images_vis * 0.5 + vis * 0.5
# vis = cv2.cvtColor(vis.astype('uint8'), cv2.COLOR_BGR2RGB)
# vis = cv2.resize(vis, src_iamge_size)
# vis_list.append(vis) # Add each visualization to the list
return vis_list
def load_model_and_tokenizer_customed(checkpoint):
kwargs = {}
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True, use_fast=False)
model = InternVLChatModel.from_pretrained(
checkpoint, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16,
load_in_8bit=False, load_in_4bit=False, **kwargs).eval()
del model.language_model.model.layers
del model.language_model.output
model = model.cuda()
return model, tokenizer |