File size: 9,013 Bytes
841bef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05ef035
841bef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d2e6db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
841bef5
 
 
 
 
 
 
 
 
9767857
841bef5
 
 
 
 
9767857
841bef5
 
 
 
 
 
 
 
 
9767857
 
 
 
 
 
 
 
 
 
 
841bef5
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import torch
import torch.nn as nn
from internvl.train.dataset import build_transform, dynamic_preprocess
from internvl.model.internvl_chat import InternVisionModel, InternVLChatModel
from torchvision.utils import make_grid
import torchvision.transforms as T
import matplotlib.pyplot as plt
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
import cv2
from PIL import Image

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
CLIP_MEAN = (0.4814546, 0.4578275, 0.40821073)
CLIP_STD = (0.2686295, 0.2613025, 0.2757711)
SIGLIP_MEAN = (0.5, 0.5, 0.5)
SIGLIP_STD = (0.5, 0.5, 0.5)
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
IMG_START_TOKEN = '<img>'
IMG_END_TOKEN = '</img>'
QUAD_START_TOKEN = '<quad>'
QUAD_END_TOKEN = '</quad>'
REF_START_TOKEN = '<ref>'
REF_END_TOKEN = '</ref>'
BOX_START_TOKEN = '<box>'
BOX_END_TOKEN = '</box>'

def load_model(config, state_dict):
    vision_model = InternVisionModel(config.vision_config)
    vit = InternVLChatModel(config, vision_model).to(torch.bfloat16)
    vit.load_state_dict(state_dict, strict=False)
    tok_embeddings = nn.Embedding(config.llm_config.vocab_size, config.llm_config.hidden_size, 2).to(torch.bfloat16)
    tok_embeddings.weight = nn.Parameter(state_dict['language_model.model.tok_embeddings.weight'])
    return vit, tok_embeddings

def load_image(image_path):
    transform = get_transform(is_train=False, image_size=448)
    image = Image.open(image_path).convert('RGB')
    images, target_aspect_ratio = dynamic_preprocess(image, min_num=1, max_num=12,
                                image_size=448, use_thumbnail=True, return_ratio=True)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values).to(torch.bfloat16)
    return pixel_values, images, target_aspect_ratio

def get_similarity_map(sm, shape, min_max=True, threshold=0.2):
    B, N, H, W = sm.shape
    sm = sm.reshape(B, N, H*W)
    if min_max:
        # min-max norm
        sm = (sm - sm.min(2, keepdim=True)[0]) / (sm.max(2, keepdim=True)[0] - sm.min(2, keepdim=True)[0])
    else:
        sm = sm > threshold
        sm = sm.float()
    # reshape
    sm = sm.reshape(B, N, H, W).float()
    # interpolate
    sm = torch.nn.functional.interpolate(sm, shape, mode='bilinear')    
    return sm

def build_transform_R50(normalize_type='imagenet'):
    if normalize_type == 'imagenet':
        MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    elif normalize_type == 'clip':
        MEAN, STD = CLIP_MEAN, CLIP_STD
    elif normalize_type == 'siglip':
        MEAN, STD = SIGLIP_MEAN, SIGLIP_STD
    else:
        raise NotImplementedError
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def load_tokenizer(tokenizer_path):
    tokenizer = AutoTokenizer.from_pretrained(
    tokenizer_path, add_eos_token=False, trust_remote_code=True, use_fast=False)
    tokenizer.tokenizer_path = tokenizer_path
    tokenizer.model_max_length = 8192
    token_list = [IMG_START_TOKEN, IMG_END_TOKEN, IMG_CONTEXT_TOKEN,
                  QUAD_START_TOKEN, QUAD_END_TOKEN, REF_START_TOKEN,
                  REF_END_TOKEN, BOX_START_TOKEN, BOX_END_TOKEN]
    num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=True)
    return tokenizer


def get_transform(is_train, image_size):
    # Build transformation function
    transform = build_transform(is_train=is_train, input_size=image_size,
                                pad2square=False, normalize_type='imagenet')
    return transform

def post_process(vit_embeds, target_aspect_ratio, model_type='VIT'):
    if model_type in ["TokenFD_4096_English_seg", "TokenFD_2048_Bilingual_seg"]:
        h = w = int(vit_embeds.shape[1] ** 0.5)
        c = vit_embeds.shape[-1]
        # vit_embeds_local = vit_embeds[:-1].reshape(-1, h, w, c).permute(0, 3, 1, 2)
        if vit_embeds.shape[0] == 1:
            vit_embeds_local = vit_embeds.reshape(-1, h, w, c).permute(0, 3, 1, 2)
        else:
            vit_embeds_local = vit_embeds[:-1].reshape(-1, h, w, c).permute(0, 3, 1, 2)
        vit_embeds_local = make_grid(vit_embeds_local, nrow=target_aspect_ratio[0], padding=0, normalize=False)
        vit_embeds_local = vit_embeds_local.permute(1,2,0)
        H, W, C = vit_embeds_local.shape
        vit_embeds_local = vit_embeds_local.reshape(H*W, C)
        return vit_embeds_local, (H, W)
    if 'R50' in model_type:
        vit_embeds = vit_embeds.reshape(-1, vit_embeds.shape[-1])
        return vit_embeds, None

def generate_similiarity_map(images, attn_map, all_bpe_strings, vis_list, target_aspect_ratio=(1,1), src_iamge_size=(1014, 1024), image_size=448):
    # if isinstance(images, list):
    #     print("111111111")
    #     if len(images) == 1:
    #         images_vis = torch.stack([T.ToTensor()(image) for image in images])
    #     else:
    #         images_vis = torch.stack([T.ToTensor()(image) for image in images[:-1]])

    #     images_vis = make_grid(images_vis, nrow=target_aspect_ratio[0], padding=0, normalize=False)
    #     print("image_size",image_size)
    #     print("target_aspect_ratio[0]",target_aspect_ratio[0])
    #     print("target_aspect_ratio[1]",target_aspect_ratio[1])
    #     target_width = image_size * target_aspect_ratio[0]
    #     target_height = image_size * target_aspect_ratio[1]

    # else:
    #     print("222222222")

    #     images_vis = T.ToTensor()(images)
    #     target_height = images.size[1]
    #     target_width = images.size[0]
    #     print("images_vis",images_vis)
    #     print("target_height",images.size[1])
    #     print("target_width",images.size[0])

    if len(images) == 1:
        images_vis = torch.stack([T.ToTensor()(image) for image in images])
    else:
        images_vis = torch.stack([T.ToTensor()(image) for image in images[:-1]])
    images_vis = make_grid(images_vis, nrow=target_aspect_ratio[0], padding=0, normalize=False)
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]

    
    # images = images[0]
    # images_vis = T.ToTensor()(images) # images [<PIL.Image.Image image mode=RGB size=1024x608 at 0x7F9B6FC24B80>]
    # print("images",images)
    # print("images_vis",images_vis)
    # target_height = images.size[1]
    # target_width = images.size[0]

    
    print("attn_map",attn_map.shape)# torch.Size([4, 76, 128])
    print("target_height",target_height) #有问题 608
    print("target_width",target_width) #有问题 1024

    attn_norm = get_similarity_map(attn_map.unsqueeze(0), (target_height, target_width), min_max=True, threshold=0.15)
    print("attn_norm ",attn_norm.shape) # 有问题attn_norm  torch.Size([1, 4, 448, 448])
    print('all_bpe_strings:{:}'.format(all_bpe_strings))
    # indexes_without_space = torch.tensor([index for index, string in enumerate(all_bpe_strings) if ' ' is not string])

    # Draw similarity map
    # print(images_vis.shape)
    images_vis = (images_vis.permute(1,2,0).cpu().numpy() * 125).astype('uint8')
    for b in range(attn_norm.shape[0]):
        for n in range(attn_norm.shape[1]):
            vis = (attn_norm[b, n, :, :].float().detach().cpu().numpy() * 255).astype('uint8')
            vis = cv2.applyColorMap(vis, cv2.COLORMAP_JET)
            print("images_vis",images_vis.shape)
            print("vis",vis.shape)
            vis = images_vis * 0.5 + vis * 0.5
            vis = cv2.cvtColor(vis.astype('uint8'), cv2.COLOR_BGR2RGB)
            vis = cv2.resize(vis, src_iamge_size)
            vis_list.append(vis)  # Add each visualization to the list
        
        # without_space_norm = attn_norm[b, indexes_without_space, :, :].max(0)[0]
        # space_norm = attn_norm[b, -1, :, :]
        # all_attn_norm = without_space_norm - space_norm
        # print(f'min:{all_attn_norm.min()};max:{all_attn_norm.max()}')
        # all_attn_norm = (all_attn_norm - all_attn_norm.min()) / (all_attn_norm.max() - all_attn_norm.min())
        # all_attn_norm = (all_attn_norm.float().detach().cpu().numpy() * 255).astype('uint8')
        # vis = cv2.applyColorMap(all_attn_norm, cv2.COLORMAP_JET)
        # vis = images_vis * 0.5 + vis * 0.5
        # vis = cv2.cvtColor(vis.astype('uint8'), cv2.COLOR_BGR2RGB)
        # vis = cv2.resize(vis, src_iamge_size)
        # vis_list.append(vis)  # Add each visualization to the list

    return vis_list


def load_model_and_tokenizer_customed(checkpoint):
    kwargs = {}
    tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True, use_fast=False)
    model = InternVLChatModel.from_pretrained(
        checkpoint, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16,
        load_in_8bit=False, load_in_4bit=False, **kwargs).eval()
    del model.language_model.model.layers
    del model.language_model.output
    model = model.cuda()
    return model, tokenizer