Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,341 Bytes
841bef5 be042ec 841bef5 0afd727 841bef5 0afd727 841bef5 312b679 ab182fd 464ed7e 0afd727 841bef5 333ea05 841bef5 0afd727 841bef5 312b679 be042ec 2e3a2cb be042ec 841bef5 464ed7e ab182fd 841bef5 be042ec 841bef5 b70aad2 841bef5 b70aad2 841bef5 b70aad2 8b7820a b70aad2 841bef5 b70aad2 464ed7e 841bef5 b70aad2 841bef5 464ed7e 841bef5 464ed7e b70aad2 464ed7e b70aad2 464ed7e ab182fd 464ed7e b2a190e ab182fd 464ed7e b2a190e 464ed7e 841bef5 464ed7e 758eccd 841bef5 f39b1b0 841bef5 464ed7e 841bef5 464ed7e 841bef5 464ed7e 841bef5 464ed7e 217b7d2 a1cdc55 464ed7e 0afd727 464ed7e b2a190e ab182fd 279f96c b2a190e 464ed7e ab182fd 279f96c ab182fd aa84990 ab182fd aa84990 464ed7e aa84990 ab182fd 841bef5 a1cdc55 464ed7e 3d2b840 ab182fd 841bef5 79d5e07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import os
import argparse
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as T
from transformers import AutoTokenizer
import gradio as gr
from resnet50 import build_model
# from utils import generate_similiarity_map, post_process, load_tokenizer, build_transform_R50
from utils import generate_similiarity_map, get_transform, post_process, load_tokenizer, build_transform_R50
from utils import IMAGENET_MEAN, IMAGENET_STD
from internvl.train.dataset import dynamic_preprocess
from internvl.model.internvl_chat import InternVLChatModel
import spaces
# 模型配置
CHECKPOINTS = {
"TokenFD_4096_English_seg": "TongkunGuan/TokenFD_4096_English_seg",
"TokenFD_2048_Bilingual_seg": "TongkunGuan/TokenFD_2048_Bilingual_seg",
}
# 全局变量
HF_TOKEN = os.getenv("HF_TOKEN")
def load_model(check_type):
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("cuda")
if check_type == 'R50':
tokenizer = load_tokenizer('tokenizer_path')
model = build_model(argparse.Namespace()).eval()
model.load_state_dict(torch.load(CHECKPOINTS['R50'], map_location='cpu')['model'])
transform = build_transform_R50(normalize_type='imagenet')
elif check_type == 'R50_siglip':
tokenizer = load_tokenizer('tokenizer_path')
model = build_model(argparse.Namespace()).eval()
model.load_state_dict(torch.load(CHECKPOINTS['R50_siglip'], map_location='cpu')['model'])
transform = build_transform_R50(normalize_type='imagenet')
elif 'TokenFD' in check_type:
model_path = CHECKPOINTS[check_type]
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False, use_auth_token=HF_TOKEN)
# model = InternVLChatModel.from_pretrained(model_path, torch_dtype=torch.bfloat16).eval()
model = InternVLChatModel.from_pretrained(model_path, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 ,load_in_8bit=False, load_in_4bit=False).eval()
transform = get_transform(is_train=False, image_size=model.config.force_image_size)
return model.to(device), tokenizer, transform, device
def process_image(model, tokenizer, transform, device, check_type, image, text):
src_size = image.size
if 'TokenFD' in check_type:
images, target_ratio = dynamic_preprocess(image, min_num=1, max_num=12,
image_size=model.config.force_image_size,
use_thumbnail=model.config.use_thumbnail,
return_ratio=True)
pixel_values = torch.stack([transform(img) for img in images]).to(device)
else:
pixel_values = torch.stack([transform(image)]).to(device)
target_ratio = (1, 1)
# 文本处理
text_input = text
if text_input[0] in '!"#$%&\'()*+,-./0123456789:;<=>?@^_{|}~0123456789':
input_ids = tokenizer(text_input)['input_ids'][1:]
else:
input_ids = tokenizer(' '+text_input)['input_ids'][1:]
input_ids = torch.tensor(input_ids, device=device)
# 获取嵌入
with torch.no_grad():
if 'R50' in check_type:
text_embeds = model.language_embedding(input_ids)
else:
text_embeds = model.tok_embeddings(input_ids)
vit_embeds, size1 = model.forward_tokenocr(pixel_values.to(torch.bfloat16).to(device))
print("vit_embeds",vit_embeds)
print("vit_embeds,shape",vit_embeds.shape)
print("target_ratio",target_ratio)
print("check_type",check_type)
vit_embeds, size2 = post_process(vit_embeds, target_ratio, check_type)
# 计算相似度
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
vit_embeds = vit_embeds / vit_embeds.norm(dim=-1, keepdim=True)
similarity = text_embeds @ vit_embeds.T
resized_size = size1 if size1 is not None else size2
# print(f"text_embeds shape: {text_embeds.shape}, numel: {text_embeds.numel()}") # text_embeds shape: torch.Size([4, 2048]), numel: 8192
# print(f"vit_embeds shape: {vit_embeds.shape}, numel: {vit_embeds.numel()}") # vit_embeds shape: torch.Size([9728, 2048]), numel: 19922944
# print(f"similarity shape: {similarity.shape}, numel: {similarity.numel()}")# similarity shape: torch.Size([4, 9728]), numel: 38912
# 生成可视化
attn_map = similarity.reshape(len(text_embeds), resized_size[0], resized_size[1])
# attn_map = similarity.reshape(len(text_embeds), *target_ratio)
all_bpe_strings = [tokenizer.decode(input_id) for input_id in input_ids]
current_vis = generate_similiarity_map([image], attn_map,
[tokenizer.decode([i]) for i in input_ids],
[], target_ratio, src_size)
current_bpe = [tokenizer.decode([i]) for i in input_ids]
# current_bpe[-1] = 'Input text'
current_bpe[-1] = text
return image, current_vis, current_bpe
# 事件处理函数
def update_index(change):
aa=1
return 1
def format_bpe_display(bpe):
# 使用HTML标签来设置字体大小、颜色,加粗,并居中
return f"<div style='text-align:center; font-size:20px;'><strong>Current BPE: <span style='color:red;'>{bpe}</span></strong></div>"
# Gradio界面
with gr.Blocks(title="BPE Visualization Demo") as demo:
gr.Markdown("## BPE Visualization Demo - TokenFD基座模型能力可视化")
with gr.Row():
with gr.Column(scale=0.5):
model_type = gr.Dropdown(
choices=["TokenFD_4096_English_seg", "TokenFD_2048_Bilingual_seg", "R50", "R50_siglip"],
label="Select model type",
value="TokenOCR_4096_English_seg" # 设置默认值为第一个选项
)
image_input = gr.Image(label="Upload images", type="pil")
text_input = gr.Textbox(label="Input text")
run_btn = gr.Button("RUN")
gr.Examples(
examples=[
[os.path.join("examples", "examples0.jpg"), "Veterans and Benefits"],
[os.path.join("examples", "examples1.jpg"), "Refreshers"],
[os.path.join("examples", "examples2.png"), "Vision Transformer"]
],
inputs=[image_input, text_input],
label="Sample input"
)
with gr.Column(scale=2):
gr.Markdown("<p style='font-size:20px;'><span style='color:red;'>If the input text is not included in the image</span>, the attention map will show a lot of noise (the actual response value is very low), since we normalize the attention map according to the relative value.</p>")
with gr.Row():
orig_img = gr.Image(label="Original picture", interactive=False)
heatmap = gr.Image(label="BPE visualization", interactive=False)
with gr.Row() as controls:
prev_btn = gr.Button("⬅ Last", visible=False)
next_btn = gr.Button("⮕ Next", visible=False)
bpe_display = gr.Markdown("Current BPE: ")
# 事件处理
@spaces.GPU
def on_run_clicked(model_type, image, text):
current_index = 0 # Reset index when new image is processed
image, current_vis, current_bpe = process_image(*load_model(model_type), model_type, image, text)
bpe_text = format_bpe_display(current_bpe)
print("current_vis",len(current_vis))
print("current_bpe",len(current_bpe))
return image, current_vis[0],f"Current BPE: {current_bpe[0]}", gr.update(visible=True), gr.update(visible=True)
run_btn.click(
on_run_clicked,
inputs=[model_type, image_input, text_input],
outputs=[orig_img, heatmap, bpe_display, prev_btn, next_btn], # 让它们显示
)
prev_btn.click(
lambda: (*update_index(-1), current_index),
outputs=[heatmap, bpe_display]
)
next_btn.click(
lambda: (*update_index(1), current_index),
outputs=[heatmap, bpe_display]
)
if __name__ == "__main__":
demo.launch() |